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Abstract: We report results from combined quantum
mechanical/molecular mechanical (QM/MM) free energy
simulations to explore metal-assisted phosphoryl transfer
and general acid catalysis in the extended hammerhead
ribozyme. The mechanisms considered here assume that
the 2′OH group of C17 has already been activated (i.e., is
deprotonated) and acts as a nucleophile to go on an in-
line attack to the adjacent scissile phosphate, passing
through a pentavalent phosphorane intermediate/transition
state, followed by acid-catalyzed departure of the O5′
leaving group of C1.1. A series of six two-dimensional
potential of mean force profiles are reported in this study,
requiring an aggregate of over 100 ns of QM/MM simula-
tion. The simulations employ the AM1/d-PhoT semiem-
pirical quantum model and linear-scaling QM/MM-Ewald
method and explore mechanistic pathways for the self-
cleavage. Results support the plausibility of a cleavage
mechanism where phosphoryl transfer and general acid
catalysis are stepwise, and where the catalytic divalent
metal ion plays an active role in the chemical steps of
catalysis.

Small self-cleaving ribozymes such as the hammerhead
ribozyme (HHR) have been instrumental as model systems for
RNA catalysis.1-3 Recently, an extended HHR structure was
determined by X-ray crystallography at 2.0 Å resolution,4 in
which a divalent metal ion was observed near the active site.

Subsequent computer simulations lend credence to the possibility
that this metal ion may play an active role in catalysis,4,5

although free energy profiles to elucidate specific pathways have
not yet been reported.

We report results from combined quantum mechanical/
molecular mechanical (QM/MM) free energy simulations to
explore metal-assisted phosphoryl transfer and general acid
catalysis in the extended HHR. The mechanisms considered here
assume that the 2′OH group of C17 has already been activated
(i.e., is deprotonated) and acts as a nucleophile to go on an
in-line attack to the adjacent scissile phosphate, passing through
a pentavalent phosphorane intermediate/transition state, followed
by acid-catalyzed departure of the O5′ leaving group of C1.1.
The general acid is assumed to be the 2′OH group of G8.6-8

A series of six 2D potential of mean force (PMF) profiles is
herein reported, requiring an aggregate of over 100 ns of QM/
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Table 1. Relative Free Energies and Internuclear
Distances at Various States of RNA Self-Cleavage
Catalysis in Hammerhead Ribozymesa

react TS1 int TS2 prod

Nu-P 3.50(04) 1.76(05) 1.66(03) 1.67(03) 1.68(03)
P-Lea 1.65(03) 2.11(05) 4.51(04) 4.24(48) 3.63(23)
gA-H 0.96(00) 0.96(00) 0.96(00) 1.78(04) 3.75(04)
H-Lea 2.57(51) 4.07(47) 4.13(73) 1.04(03) 1.00(03)
Mg2+-Lea 3.99(18) 3.61(17) 2.02(05) 2.83(86) 4.48(05)
Mg2+-gA 4.56(18) 4.03(18) 4.33(06) 3.38(86) 2.03(05)
∆G 0.0(4) 24.4(6) -6.7(3) 13.7(7) -13.6(9)

a Free energies (∆G) are in kcal/mol, which were extracted from
1D PMF profiles along the minimum free-energy path through the
2D profiles. Average distances (X-Y) are in Å. Standard
deviations are listed in parentheses divided by the decimal
precision of the average values. The abbreviations “react”, “TS”,
“int”, and “prod” signify reactant, transition, intermediate, and
product states, respectively, and for the distance metrics, “Nu”,
“Lea”, “gA”, and “H” refer to the O2′ nucleophile, O5′ leaving
group, general acid residues G8:O2′, and H2′, respectively.

Figure 1. Schematic diagram for relative free-energy barriers
and the corresponding reaction rate constants.
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MM simulation. Simulations were based on the extended HHR
solvent structure (PDB: 2OEU)4 solvated by over 10 000 water
molecules. Active site residues (G8, A9, C1.1, C17, and an
Mg2+ ion with coordinated water molecules shown in Figure
3) were treated quantum mechanically (81 atoms total) using
the AM1/d-PhoT quantum model9 with the AM1/d model for
Mg2+.10 We used the all-atom AMBER parmbsc0 force field,11

to describe the HHR outside of the active site, along with the
TIP4P-Ewald water model12 and the consistent set of monova-
lent ion parameters.13 Multidimensional PMF profiles were
generated along reaction coordinates corresponding to phos-
phoryl transfer, proton transfer from the general acid to the
leaving group, and the divalent metal ion binding mode.
Complete details are given in the Supporting Information.

Phosphoryl transfer and general acid steps are stepwise, and
sensitiVe to the Mg2+ binding mode. Our initial attempts to study
the chemical steps of the HHR reaction from 2D PMF profiles
using phosphoryl transfer and proton transfer reaction coordi-
nates, but not considering a reaction coordinate associated with
Mg2+ ion binding mode, led to free energy barriers that were
unexpectedly high (∼37 kcal/mol) compared to an estimated
barrier of ∼20 kcal/mol derived from the experimental rate of
one turnover per minute in HHR catalysis.14 We extended the
calculations so as to include a 3D-PMF profile with a course-
grained reaction coordinate associated with the Mg2+ binding
mode and confirmed the sensitivity of the barriers to the Mg2+

ion position along the reaction coordinate. A common feature
of the reaction mechanism derived from the 3D profile was that
the phosphoryl transfer and general acid steps were stepwise
(e.g., Figure 2a), allowing these steps to be decoupled. Both
the phosphoryl transfer and general acid steps of the reaction
were coupled with the Mg2+ binding mode, and hence separate
2D profiles were generated for each step with a reaction
coordinate corresponding to the Mg2+ binding mode as a second
dimension. Table 1 summarizes key average geometrical
parameters, and free energy values for stationary points along
the reaction. The corresponding reaction rate constants are
depicted in Figure 1.

Phosphoryl transfer is rate-limiting and facilitated by elec-
trostatic stabilization by Mg2+. The phosphoryl transfer step is
rate-controlling, having a free energy barrier of approximately

24.4 kcal/mol. The position of the Mg2+ ion follows the negative
charge along the phosphoryl transfer reaction coordinate in order
to provide electrostatic stabilization. The change in the Mg2+

position is continuous and monotonic throughout the phosphoryl
transfer step (Figure 2b) and is most pronounced in the initial
and final stages when the nucleophile and leaving group have
the greatest negative charge. The transition state is late (Figure
3), having a P-O5′ distance of 2.11 Å. As the P-O5′ bond
breaks, the Mg2+ ion forms an innersphere coordination, leading
to a Mg2+-bound O5′ alkoxide intermediate.

General acid catalysis is concerted with changes in the Mg2+

binding mode. The general acid step considered here assumes
that the 2′OH of G8 acts as a general acid catalyst to transfer
a proton to the O5′ leaving group. An examination of Figure
2c indicates that proton transfer occurs after formation of the
Mg2+-coordinated cleaved intermediate and is concerted with
changes in Mg2+ binding mode. Unlike the phosphoryl transfer
step, participation of the Mg2+ along the reaction coordinate is
most pronounced not at the end points of the step but near the
midpoint where the proton transfer occurs.

The free energy barrier for the transition state of the general
acid step (Figure 3) is 13.7 kcal/mol with respect to the activated
precursor state. The intermediate is only 6.7 kcal/mol lower in

Figure 2. (A) Selected 2D surface, harmonically restrained along the course-grained metal ion binding coordinate at d (Mg2+,
G8:O2′) ) 2.5 Å, where z1 ) d(O5′,P) - d(P,O2′), z2 ) d(G8:O2′,H) - d(H,O5′). (B) 2D PMF for the Mg2+ binding mode in the
phosphoryl transfer step, where z4 ) d(Mg2+, O5′) + d(Mg2+, G8:O2′). (C) 2D PMF for the Mg2+ binding mode in the general
acid step, where z5 ) d(Mg2+, O5′) - d(Mg2+, G8:O2′). d(x,y) denotes distance between x and y. TS is the acronym of transition
state.

Figure 3. Snapshots of the active site at the transition states
for phosphoryl transfer (left) and general acid catalysis (right)
with average distances labeled.
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free energy than the activated precursor and has a 20.4 kcal/
mol barrier to breakdown into the product state with a proton
fully transferred to the O5′ leaving group.

Relation with experiment. The present work explores a
specific mechanistic scenario, departing from the activated
precursor state, that assumes the catalytic metal ion is in a
position bridging the A9 and scissile phosphates, and the 2′OH
of G8 acts as a general acid catalyst. The former metal ion
binding mode has not yet been observed experimentally but has
been inferred from biochemical experiments on the minimal15

and extended16 HHR and predicted by molecular simulations.5,17,18

The latter role of G8 is consistent from structural4 and
biochemical data.6-8 There has been seminal work on the study
of metal ion interactions for the minimal HHR19,20 that provide
insight into the ligand environment of the site bound metal.
Time-resolved NMR experiments suggest that there is a dynamic
equilibrium between energetically similar conformations in the
minimal HHR that are sensitive to Mg2+ binding,21 and it has
been suggested that the minimal and extended HHR may utilize
a similar dynamic reaction mechanism for catalysis.22 In the
present study, we provide computational support for the
plausibility of a cleavage mechanism where phosphoryl transfer
and general acid catalysis are stepwise and the catalytic divalent
metal ion plays an active role in the chemical steps of catalysis.
It is the hope that this work, together with experimental work
that probes the nature of metal ion interactions at the active
site, will provide deeper insight into the underpinnings of
chemical catalysis in the HHR.
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Abstract: Information-guided noise reduction (IGNoR) [Chem. Phys. Lett. 2004, 400, 446], a
procedure for reducing the statistical error in Monte Carlo integration of oscillatory functions, is
generalized to cases where both the prototype function and remaining integrand are complex-
valued. The method is applied to the forward-backward semiclassical dynamics approximation
of time correlation functions. Illustrative calculations of velocity autocorrelation functions in
supercritical argon and liquid neon are presented.

I. Introduction

The so-called sign problem presents a major challenge in
the Monte Carlo (MC) integration of oscillatory functions.1

In statistical and condensed matter physics, integrands of
alternating sign occur primarily in equilibrium calculations
of identical fermions (as a result of particle exchange to
account for antisymmetry) and in quantum dynamical
calculations (because of the phase interference in the time
evolution operator). Currently, the severity of the sign
problem restricts the application of quantum Monte Carlo
and path integral Monte Carlo methods to high temperatures,
short times, and/or small numbers of particles or necessitates
the use of extraneous approximations.

Few attempts to overcome the sign problem have been
reported. Blocking algorithms2 minimize cancellation by
grouping integrand points and performing the sum within
each block with deterministic methods. By choosing the
blocks judiciously, the variance of the block averages can
be smaller than that of the original function, thus reducing
cancellation in the Monte Carlo step. A different, fully Monte
Carlo based approach is information-guided noise reduction3

(IGNoR). This exploits the knowledge of the exact integral
for a similar, prototypical highly oscillatory function. The
Monte Carlo random walk samples the prototype function
and the desired integrand, estimating the ratios of the positive
and negative parts of the two functions. With that informa-
tion, IGNoR replaces the raw Monte Carlo estimate of the
negative part of the desired integral by a corrected estimate

obtained from knowledge of the exact integral of the
prototype function. If the original and prototype functions
are very similar, the IGNoR procedure will by construction
generate excellent statistics.

In addition to these quite general algorithms, there are
several strategies for reducing the severity of the sign
problem by smoothing the integrand. The majority of these
approaches are by nature approximate methods, but a few
can be classified as numerically exact. In the present paper,
we focus on the IGNoR methodology, which is a general
and strictly numerical scheme for improving the Monte Carlo
statistics within a specific formulation, i.e., without altering
the integrand.

Clearly, the choice of the prototype function in IGNoR is
critical to the success of the algorithm. Thus, the most critical
step in the application of the algorithm is the identification
of a function that is as similar as possible to the given
integrand but whose integral is known exactly or at least
can be obtained numerically to high accuracy. In many
quantum mechanical methods, the prototype function must
be chosen as a complex-valued part of the integrand. Thus,
we generalize the original IGNoR methodology to the case
of complex functions, pointing out that application of the
noise reduction procedure to separate (ungrouped) terms is
highly beneficial.

In section II, we review the IGNoR methodology and
extend it to complex-valued integrands. Section III shows
how the IGNoR correction may be applied to the calculation
of time correlation functions within the forward-backward
semiclassical dynamics (FBSD) approximation. The same* Corresponding author e-mail: nancy@makri.scs.uiuc.edu.
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section presents applications to the time correlation function
of liquids, which demonstrates the dramatic decrease in
statistical error attainable with the IGNoR procedure. Finally,
some concluding remarks are given in section IV.

II. Information-Guided Noise Reduction for
Complex Functions

a. IGNoR for Real Functions. The goal is to evaluate
the (definite) integral J of an oscillatory function using a
Monte Carlo procedure.4 We start by expressing the desired
integral in the form

where f(x) is a reference function that is highly oscillatory,
g(x) is slowly varying, and the value of the integral

is known in advance. IGNoR exploits the helpful information
in eq 2.2 to decrease the statistical error of the raw Monte
Carlo estimate of eq 2.1.

First, I and J are split into their “signed” parts:

where

denotes the Heaviside step function. Next, the Monte Carlo
random walk with a convenient sampling function is
performed to obtain estimates 〈I(〉 and 〈J(〉 of the integrals
2.3 and 2.4. In the raw Monte Carlo procedure, the estimate
of the desired integral is obtained by the simple addition

The sign problem occurs because the positive and negative
parts are comparable in absolute value, and their sum
typically is smaller than the statistical error in their estimates.
To improve the situation, IGNoR replaces 〈J-〉 by the
corrected value given by

Thus, the IGNoR-corrected estimate of the integral of interest
is3

Because 〈I(〉 and 〈J(〉 are computed from the same random
walk, these estimates are correlated; thus the error in the
ratio 〈J-〉/〈I-〉 generally is small. In fact, in the special case
where g(x) ) a is a real constant, because the estimates 〈I(〉
and 〈J(〉 are obtained from the same random walk, 〈J-〉/〈I-〉
) a exactly, and thus

i.e., the IGNoR estimate 2.8 is exact. For nonconstant but
slowly varying g(x), eq 2.8 should be more accurate than
the brute Monte Carlo estimate 〈J+〉 + 〈J-〉.

We note that the procedure requires knowledge of the
normalization integral of the MC sampling function. The
latter must be available either exactly, or at least with much
higher precision (smaller statistical uncertainty) than 〈I(〉.
Recovery of the exact integral value of 2.9 in the case of
constant g holds only if the exact value of the MC
normalization integral is known.

Finally, we note that eq 2.9 can be symmetrized,5 leading
to the prescription

taking care to remember that partial error cancellation is
achieved through the pairings 〈J+〉 + J̃- and 〈J-〉 + J̃+, as
evident through eq 2.9. The symmetrized IGNoR prescription
may offer some advantages, although unsymmetrized and
symmetrized formulas produced very similar results in the
calculations reported in section III.

b. IGNoR for Complex Functions. To extend IGNoR
to cases where both functions are complex-valued, one needs
to separate the integrand into appropriate real and imaginary
parts. One may split the product fg into its real and imaginary
components, resulting in two integrals to be calculated by
IGNoR. A second choice is to apply the IGNoR correction
to each of the four terms in the product fg. An earlier
application of IGNoR6 used the first partitioning, which is
not optimal, because the relevant functions are not necessarily
strongly correlated. For example, in the special case where
g is a complex-valued constant, the IGNoR based on splitting
the product fg into real and imaginary parts does not lead to
the exact result. Below, we describe the second partitioning,
which is designed to have zero statistical error when g is a
complex-valued constant and thus should be more accurate
when g(x) is a smooth complex-valued function.

We begin by separating the desired integral into four
components arising from the real and imaginary parts of each
of the two functions:

where

We also write I ) Ir + iIi and define the integrals of the
positive and negative components of each integral:

J ) ∫ f(x) g(x) dx (2.1)

I ) ∫ f(x) dx (2.2)

I( ) ∫ f(x) h((f(x)) dx (2.3)

J( ) ∫ f(x) g(x) h((f(x)) dx (2.4)

h(z) ) {0 z < 0
1 z g 0

(2.5)

〈J〉 ) 〈J+〉 + 〈J-〉 (2.6)

J̃- )
〈J-〉
〈I-〉 (I - 〈I+〉) (2.7)

〈J+〉 + J̃- ) 〈J+〉 +
〈J-〉
〈I-〉 (I - 〈I+〉) (2.8)

〈J+〉 + J̃- ) a〈I+〉 + aI - a〈I+〉 ) aI ) J (2.9)

1
2

[〈J+〉 + J̃- + 〈J-〉 + J̃+] (2.10)

J ) Jrr - Jii + iJri + iJir (2.11)

Jrr ) ∫Re f(x) Re g(x) dx, Jri ) ∫Re f(x) Im g(x) dx,

Jir ) ∫ Im f(x) Re g(x) dx, Jii ) ∫ Im f(x) Im g(x) dx

(2.12)

I(
r ) ∫Re f(x) h((Re f(x)) dx,

I(
i ) ∫ Im f(x) h((Im f(x)) dx (2.13)
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Now, we apply the original IGNoR procedure to each
component of J:

Since the IGNoR prescription is now performed on four real-
valued integrands, eq 2.15 should yield the exact value of
the desired integral in the case where g is a complex-valued
constant. The numerical calculations reported in section III
follow this procedure.

III. Application: Forward-Backward
Semiclassical Dynamics of Liquids

Various simulation methods developed in the past decade
are based on semiclassical ideas.7 Semiclassical methods8

are attractive because they employ classical trajectories to
capture dynamical effects. Still, the highly oscillatory
semiclassical phase leads to a severe sign problem, and fully
semiclassical calculations in many-particle systems remain
impractical. Certain semiclassical approximations to Heisen-
berg operators, which contain forward and reverse time
evolution steps, take advantage of the proximity (in the
stationary phase limit) of forward and backward trajectories
to eliminate the oscillatory semiclassical phase altogether.9

In the particular case of time correlation functions, such ideas
give rise to linearized semiclassical10,11 (LSC) and forward-
backward12,13 semiclassical dynamics (FBSD) approxima-
tions. However, even with this extremely important stabiliza-
tion, the resulting expressions converge much slower than
fully classical calculations. This is so because of the presence
of oscillatory components through coherent state factors (in
the case of FBSD) or the Wigner transformation (in the case
of LSC approximations). Further, more accurate (and costly)
semiclassical treatments have been formulated, which rein-
troduce a portion of the oscillatory semiclassical phase,
thereby capturing some coherence features at the expense
of numerical stability.14 All of these situations invite the
application of IGNoR to improve convergence. In this
section, we illustrate the enhancement obtained by imple-
menting the IGNoR methodology on FBSD calculations of
velocity correlation functions in neat liquids.

Our present focus is on time correlation functions at a finite
temperature, specifically the correlation function for the inner
product of two vector operators Â and B̂

Here, Ĥ is the Hamiltonian that describes the n-particle
system, Â and B̂ are vector operators, � ) 1/kBT is the
reciprocal temperature, and Z ) Tr e-�Ĥ is the canonical
partition function. The three-dimensional Cartesian position
and momentum vectors for the jth atom are denoted,
respectively, as rj ) (rj1,rj2,rj3) and pj ) (pj1,pj2,pj3). For
notational convenience, the coordinates and momenta of all
of the particles are collected in the 3n-dimensional vectors
Q and P, respectively. The Hamiltonian is written as

where T̂ is the operator for the total kinetic energy of the
system.

Exponentiation of the operator B̂ via a derivative identity
and application of the forward-backward semiclassical idea
in a coherent state representation15 gives rise to the following
FBSD approximation of eq 3.1:13

Here, Q(0) and P(0) are the initial phase space variables for
classical trajectories that evolve according to the classical
equations of motion corresponding to the product of three
exponential operators, Q(t) and P(t) are the phase space
variables at time t, and B(Q,P) is the classical analogue of
the operator B̂. The ket in eq 3.4 represents a 3n-dimensional
coherent state,16 i.e., a product of n three-dimensional
coherent states for each particle, and is described in the
coordinate representation by the wave function

where Γ is a 3n × 3n matrix. Throughout the rest of the
paper, we choose a diagonal form with elements γj repre-
senting the width parameters of the coherent state for the
jth particle. Typically, these values are chosen to match the
characteristic frequencies of the system.

The next step to consider is the evaluation of the coherent
state transform of the operators, both of which involve the
Boltzmann operator. A fully quantum treatment of this time-
independent part is essential in capturing the effects of zero-
point energy and reproducing the imaginary part of a
correlation function. An accurate evaluation of these matrix
elements is possible17-19 by using the discretized path

J(
rr ) ∫Re f(x) Re g(x) h((Re f(x)) dx,

J(
ri ) ∫Re f(x) Im g(x) h((Re f(x)) dx,

J(
ir ) ∫ Im f(x) Re g(x) h((Im f(x)) dx,

J(
ii ) ∫ Im f(x) Im g(x) h((Im f(x)) dx

(2.14)

J̃-
rr )

〈J-
rr〉

〈I-
r 〉

(Ir - 〈I+
r 〉), J̃-

ri )
〈J-

ri 〉

〈I-
r 〉

(Ir - 〈I+
r 〉),

J̃-
ir )

〈J-
ir 〉

〈I-
i 〉

(Ii - 〈I+
i 〉), J̃-

ii )
〈J-

ii 〉

〈I-
i 〉

(Ii - 〈I+
i 〉)

(2.15)

CA·B(t) ) 1
Z

Tr(e-�ĤÂ eiĤt/p · B̂ e-iĤt/p) (3.1)

Ĥ ) T̂ + V(Q̂) (3.2)

T̂ ) ∑
j)1

n

T̂j ) ∑
j)1

n |p̂j|
2

2mj
(3.3)

CA·B(t) ) (2πp)-3nZ-1∫ dQ(0)∫ dP(0)(1 + 3
2

n)〈G(Q(0), P(0))|

|e-�ĤÂ|G(Q(0), P(0))〉·B(Q(t), P(t))

- 2(2πp)-3nZ-1 ∫ dQ(0)∫ dQ(0)〈G(Q(0), P(0))|(Q̂ - Q(0)) e-�Ĥ

[Â·B(Q(t), P(t))]·Γ·(Q̂ - Q(0))|G(Q(0), P(0))〉
(3.4)

〈Q|G(Q(0), P(0))〉 ) ∏
j)1

n

〈rj|g(rj
(0), pj

(0))〉

) ( 2
π)3n/4

(det Γ)1/4 ×

exp[-(Q - Q(0)) Γ(Q - Q(0)) +
i
p

P(0)(Q - Q(0))

(3.5)
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integral representation of the Boltzmann operator.20 After
some algebra, eq 3.4 becomes

In these equations, ∆� ) �/N,

is the integrand in the Trotter-discretized path integral
representation of the coherent state transform of the Boltz-
mann operator, and the function ΛA ·B depends upon the form
of the chosen operators. Recent work has focused on
momentum autocorrelation functions, obtained with the
choice Â ) B̂ ) p̂. In that case, Λp ·p is given by the
expression18

where

and

Equation 3.6 is a quasiclassical expression. From eqs 3.8
and 3.10, one can see that all time dependence in the FBSD
correlation function arises from the classical momentum
values pjR(t).

The multidimensional integral appearing in eq 3.6 is
performed by Monte Carlo (or, alternatively, a molecular
dynamics procedure21). The Monte Carlo procedure com-
monly uses the modulus of the absolute value of the
exponential part as the sampling function

In the single-bead (N ) 1) case, the integral of this sampling
function is proportional to the partition function, thus the
normalization integral cancels out. However, this is not the
case when N > 1, and one must perform a separate Monte
Carlo calculation to normalize the results. This can be done
efficiently using a straightforward procedure.18

Even in the single-bead limit, the integrand of the FBSD
expression contains negative components. In addition, a
mildly oscillatory factor

is present when N > 1, which arises from the coherent state
phase. Because these factors introduce phase cancellation,
whose magnitude increases exponentially with the number
of particles, the use of IGNoR should be beneficial.

We have found the IGNoR procedure for complex func-
tions ideally suited to the present situation with the choice

Because eq 3.13 is the integrand of the t ) 0 expression, its
integral is proportional to the equilibrium value of the kinetic
energy

and can be obtained by a high-precision path integral Monte
Carlo calculation (which does not suffer from the dynamical
sign problem). Further, the imaginary part of the integral is
identically equal to zero. Here, we report the results of
calculations on supercritical argon and liquid neon.

Figure 1 shows single-bead (N ) 1) FBSD results for
supercritical argon. The calculations were performed at 183
K and a density of 1.15 g cm-3 upon a cubic unit cell
containing 108 atoms under periodic boundary conditions.
All interactions were truncated at half of the unit cell
dimensions and are described by a Lennard-Jones potential
with ε ) 85 cm-1 and σ ) 3.4 Å, where r represents the
interatomic separation.22 Raw and IGNoR-corrected Monte
Carlo results from calculations with only 10 000 trajectories
are compared against earlier results using molecular dynam-
ics sampling with 1 million trajectories. At t ) 0, the
partitioning described in eqs 3.13 and 3.14 results in g ) 1,
which guarantees, by construction, zero IGNoR error.
However, Figure 1 shows that the statistical error of the
IGNoR calculations remains small as the time increases.
Although the integrand is not rapidly oscillatory in the single
bead limit, where the problematic phase factor 3.12 reduces
to unity, application of the IGNoR procedure described in
the previous section results in considerable shrinking of
statistical error, yielding meaningful results with a 100-fold

CA·B(t) ) (2πp)-3nZ-1

×∫ dQ(0) ∫ dP(0) ∫ dQ(1)...∫ dQ(N)

Θ(Q(0), P(0), Q(1), ..., Q(N))
ΛA·B(Q(0), P(0), Q(1), ..., Q(N);t)

(3.6)
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n (2γj

π )3/2( mj
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)3
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2πp2∆�)3(N-1)/2
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n mj
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2∆�γj

(γj|rj
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(0)|2 + i
p

pj
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∑
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2p2∆�
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k)2

N
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N
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∑
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2∆�γj

[pjR
(0) + 2ipγj(rjR
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f(Q(0), P(0), Q(1), ..., Q(N)) )
(2πp)-3nZ-1Θ(Q(0), P(0), Q(1), ..., Q(N))

Λp·p(Q(0), P(0), Q(1), ..., Q(N);0)

(3.13)

g(Q(0), P(0), Q(1), ..., Q(N)) )
Λp·p(Q(0), P(0), Q(1), ..., Q(N);t)

Λp·p(Q(0), P(0), Q(1), ..., Q(N);0)
(3.14)

I ) Z-1Tr(e-�Ĥ p̂ · p̂) (3.15)
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reduction in the number of trajectories compared to the earlier
raw calculation.

Similar calculations were performed on liquid neon with
parameters chosen to match the calculations of Lawrence et
al. (T ) 29.9 K and a density of 0.03755 Å-3). Interactions
between neon atoms were described by a Lennard-Jones
potential with ε ) 35.6 K and σ ) 2.749 Å. In order to
avoid performing additional Monte Carlo calculations re-
quired for normalization, the IGNoR-corrected results were
scaled arbitrarily to have the maximum of each curve equal
to unity. This is possible because Ii ) 0 for FBSD
autocorrelation functions.

Figure 2 shows (scaled) raw Monte Carlo and IGNoR-
corrected FBSD results with N ) 2 obtained from a
calculation with 8 million trajectories. As seen in Figure 2a,
the error reduction accomplished by applying the IGNoR
procedure is much more dramatic compared to the single-
bead calculation in Figure 1. This is so because negative
integrand areas arise not only from Λp ·p but also from factor
3.12, which makes phase cancellation much more prevalent.
Also, Figure 2b shows that the current application of IGNoR,
eq 2.15, where the noise reduction is applied to each term
in the real and imaginary components, results in much better
statistics.

Finally, Figure 3 shows similar (scaled) IGNoR-corrected
FBSD results for N ) 1-4. As the number of path integral
beads is increased, the Trotter-discretized FBSD results
approach those obtained in the single-bead PPP approxima-

Figure 1. Velocity autocorrelation function of supercritical argon from FBSD calculations in the single-bead discretization of the
Boltzmann operator. Blue and red markers show raw and IGNoR-corrected Monte Carlo results (along with error bars), respectively,
from calculations with 10 000 trajectories. The black line shows equivalent results using molecular dynamics sampling with 1
million trajectories.

Figure 2. Velocity autocorrelation function of liquid neon from FBSD calculations with N ) 2 using 8 million trajectories. (a)
Raw (blue) and IGNoR-corrected (red) Monte Carlo results. (b) Comparison of IGNoR corrected results from the application of
error correction to each term of the real and imaginary parts, as prescribed by eq 2.15 (red), vs application to the entire real and
imaginary part of the correlation function (green). It is seen that the current procedure, where the IGNoR processing is applied
to each term separately, leads to much better statistics. The error bars of the results obtained from the IGNoR procedure given
by eq 2.15 are smaller than the size of the markers.

Figure 3. Velocity autocorrelation function of liquid neon from
IGNoR-corrected FBSD calculations with N ) 1-4 (black
dashed line, blue circles, black dashed line and red squares,
respectively) using 8 million trajectories. For clarity, error bars
are shown only for N ) 2 and 4. The black line shows FBSD
results with the PPP single-bead discretization of the Boltz-
mann operator. All curves have been scaled to the same
maximum.
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tion to the Boltzmann operator.22 An increase in the number
of beads beyond N ) 1, which was previously prohibitive
computationally with these particular parameters because of
dramatic phase cancellation, becomes feasible with modest
numbers of trajectories by incorporating the IGNoR correc-
tion in the FBSD methodology.

IV. Concluding Remarks

We have presented an efficient extension of the IGNoR
Monte Carlo methodology to complex-valued functions. The
basic requirement of IGNoR is the identification of a function
f that incorporates as much of the integrand (including the
oscillatory components) as possible and whose integral is
known accurately. If the remaining factor g of the integrand
is sufficiently smooth, the IGNoR correction leads to a large
reduction of statistical error compared to the raw Monte Carlo
estimate. In the case of complex-valued functions, we find
the application of IGNoR to each of the four terms arising
from the real and imaginary parts of the product fg most
effective.

The application of IGNoR to FBSD correlation functions
in neat liquids led to a dramatic reduction of statistical error.
When the Boltzmann operator is discretized using multiple
path integral beads (N > 1), the FBSD integrand is oscillatory
and its variance grows rapidly as the number of particles is
increased. For certain parameters, the raw Monte Carlo
evaluation of the FBSD expression becomes prohibitively
expensive. The application of IGNoR reduced the statistical
error by several orders of magnitude, making convergence
feasible with modest amounts of computational effort.

Because our goal in this paper was assessing the improve-
ment attainable through IGNoR, our calculations employed
the primitive Trotter discretization. In addition, we refrained
from performing the separate Monte Carlo calculation
required to evaluate the normalization integral of the
sampling function, reporting un-normalized results. Future
work should incorporate the correct normalization constant
and employ the more efficient pair-product propagator,23,24

which will lead to much faster convergence of FBSD
correlation functions in neat fluids.
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Abstract: We present sets of convergent, partially augmented basis set levels corresponding
to subsets of the augmented “aug-cc-pV(n+d)Z” basis sets of Dunning and co-workers. We
show that for many molecular properties a basis set fully augmented with diffuse functions is
computationally expensive and almost always unnecessary. On the other hand, unaugmented
cc-pV(n+d)Z basis sets are insufficient for many properties that require diffuse functions.
Therefore, we propose using intermediate basis sets. We developed an efficient strategy for
partial augmentation, and in this article, we test it and validate it. Sequentially deleting diffuse
basis functions from the “aug” basis sets yields the “jul”, “jun”, “may”, “apr”, etc. basis sets.
Tests of these basis sets for Møller-Plesset second-order perturbation theory (MP2) show the
advantages of using these partially augmented basis sets and allow us to recommend which
basis sets offer the best accuracy for a given number of basis functions for calculations on
large systems. Similar truncations in the diffuse space can be performed for the aug-cc-pVxZ,
aug-cc-pCVxZ, etc. basis sets.

1. Introduction

In quantum mechanical electronic structure calculations, the
orbitals in configuration state functions may be represented
as linear combinations of contracted functions, which in turn
are linear combinations of spherical harmonics times radial
functions with preoptimized exponential parameters. The
radial functions can be Gaussian or Slater-type functions.
Slater-type functions are more physical, but for ease of
computation of the two-electron integrals, Slater-type func-
tions are usually replaced by linear combinations of Gauss-
ian-type functions.1,2 The so-called � level reflects the degree
of decontraction of the primitive Gaussian functions used to
represent valence orbitals. For example, for carbon, valence
double-� denotes two contracted functions designed to
represent 2s orbitals and two contracted subshells to represent
2p orbitals, whereas valence triple-� denotes three, etc. Since
the core is single-� quality in most modern basis sets, one
often says “double-�” instead of “valence double-�”, and so

forth for triple, quadruple, etc. Double-, triple-, and quadru-
ple-� are usually abbreviated DZ, TZ, and QZ, respectively.
The contraction coefficients and exponential parameters for
standard basis sets are available as lists called basis sets.
Standard basis sets usually include polarization functions
(e.g., d functions for carbon, p functions for hydrogen) and
sometimes include diffuse functions.

The choice of the basis set for a given problem is critical,
because it greatly affects the quality of the results as well as
the cost of acquiring them. A basis set that is too large can
make higher-level methods unaffordable for a given system
or a given level unaffordable for larger systems. On the other
hand, too small of a basis set can prevent taking full
advantage of the potential accuracy of an otherwise very
accurate electronic structure level. We have been especially
interested in the requirements for diffuse basis functions as
they play an important role in calculations of such commonly
computed molecular properties as electron affinities, non-
covalent interaction energies, and barrier heights for chemical
reactions. Diffuse functions are characterized by very small
exponential parameters, which allow the electrons to be
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further away from the nuclei, so they are crucial for many
systems and properties involving anions, transition states,
excited states, and polarizability. However, if an unneces-
sarily large set of diffuse functions is used, the calculations
may become unfeasible or unnecessarily expensive.

Three approaches to supplying basis sets with diffuse
functions have emerged and have been widely used. In basis
sets developed by Pople, Schleyer, and co-workers3,4 (some-
times called Pople-type basis sets), s and p diffuse functions
are added on atoms heavier than He, which is indicated by
“+” in the name of the basis set. A second “+” in the name
indicates that in addition to the diffuse functions on the non-
hydrogenic atoms, diffuse s functions are added on the
hydrogen atoms. Correlation consistent basis sets by Dunning
and co-workers (including cc-pVnZ5-9 and cc-pV(n+d)Z10)
are augmented with gradually increasing sets of diffuse
functions for increasing decontraction of the valence space
(aug-cc-pVnZ5-9,11,12 and aug-cc-pV(n+d)Z10). The angular
momentum quantum numbers included in the diffuse spaces
of aug-cc-pVnZ and aug-cc-pV(n+d)Z basis sets for n )
D, T, and Q are listed in Table 1. The other rows of this
table (other than “aug-”) will be explained below. In a third
approach, Jensen recommended including sets of diffuse
functions (on all atoms) such that the number of diffuse
functions increases with increasing n.13 The Pople strategy
is not convergent in the diffuse space, in that the number of
diffuse functions is not systematically increased when the �
level is increased, whereas the Dunning and Jensen ap-
proaches are convergent.

We will use the term “augmentation” to denote adding
diffuse functions to a basis (whereas “extension” means
raising the � level or adding polarization functions), and we
will use “full augmentation” to denote adding a diffuse
function for every angular momentum present in the unaug-
mented basis set. The aug- basis sets are fully augmented. It
has been known for a long time that augmentation on
hydrogen atoms is less important than augmentation on
nonhydrogenic atoms (e.g., Schleyer and co-workers defined
the “+” basis sets that omit augmentation on hydrogen

atoms;3 del Bene and Shavitt14 showed that they could
converge proton affinities and hydrogen bonding energies
with respect to basis set without diffuse functions on H; and
Lynch and one of the authors15 showed that diffuse functions
are not needed on H even in molecules where H has a partial
negative charge), and the present article is mainly concerned
with the level of augmentation on nonhydrogenic atoms. We
have previously shown that the full augmentation of non-
hydrogenic atoms in the basis sets defined by Dunning and
co-workers often leads to unnecessary expense in calculations
by density functional theory (DFT).16,17 In particular, we
showed that the nonconvergent “+” approach is often
sufficient for DFT calculations, and a basis set obtained by
deleting all diffuse functions in aug- basis sets except the
diffuse s and p functions on non-hydrogenic atoms has been
called minimally augmented, denoted by the prefix maug.16

However, we have also seen that wave function theory
(WFT) calculations are more sensitive than DFT calculations
to the saturation of the diffuse space in the nonhydrogenic
basis space as well as to the size of the basis set in
general.16,17 This is because correlation energy in WFT
converges very slowly with respect to the number of one-
electron basis functions, and this slow convergence occurs
because products of one-electron functions in a Slater-
determinant poorly describe the cusps in the two-electron
densities as the interelectronic distance approaches zero. The
most slowly convergent part of the electron correlation
energy is the part covered by second-order Møller-Plesset
perturbation theory18 (MP2). The reason for this is that
although higher-order corrections are important, the contribu-
tions of the weakly coupled virtual orbitals at second order
are quantitatively larger,19,20 and it is important to understand
how to include them efficiently. In practical work, in order
to obtain as accurate results as one can afford using WFT
for a given system, it is a common practice21-26 to calculate
the MP2 energy part at the complete basis set limit and to
add higher-order corrections (e.g., the difference between
an MP2 calculation and a calculation by the coupled cluster
method with single and double excitations and a quasiper-
turbative treatment of connected triple excitations27

CCSD(T)) calculated with a smaller basis set. Therefore,
achieving the MP2 CBS limit is of a great practical interest.

One popular way to determine the MP2 CBS limit is
extrapolation.28-30 Recently, Møller-Plesset perturbation
calculations employing basis functions that depend explicitly
on electron-electron distances (MP2-R12 or MP2-F1231-44)
have provided a powerful, alternative way to approach the
MP2 basis set limit in a very efficient way, by explicitly
improving the description of the cusp. MP2-F12 is very
rapidly convergent with respect to the size of the one-electron
basis set. In some key studies, the rapid convergence of the
MP2-F12 method has often been established on the basis of
heats of formation,45 absolute correlation energy,48 and
energies of reaction,48 but we note that, for neutral molecules
and cations, heats of formation and energies of reaction are
typically insensitive to the inclusion of the diffuse basis
functions; thus a more recent study by Werner et al.46 that
examined not only reaction energies and atomization energies
but also electron affinities, ionization potentials, equilibrium

Table 1. Angular Momenta Included in the Diffuse Space
in Tested Basis Sets

basis seta Li through Ca H and He

aug-cc-pV(Q+d)Z s p d f g s p d f
jul-cc-pV(Q+d)Z s p d f g
jun-cc-pV(Q+d)Z s p d f
may-cc-pV(Q+d)Z s p d
apr-cc-pV(Q+d)Zb s p
cc-pV(Q+d)Z
aug-cc-pV(T+d)Z s p d f s p d
jul-cc-pV(T+d)Z s p d f
jun-cc-pV(T+d)Z s p d
may-cc-pV(T+d)Zc s p
cc-pV(T+d)Z
aug-cc-pV(D+d)Z s p d s p
jul-cc-pV(D+d)Z s p d
jun-cc-pV(D+d)Zd s p
cc-pV(D+d)Z

a The same diffuse functions can be employed for
month-cc-pV(n+d)Z or cc-pV(n+d)Z and for month-cc-pVnZ or
cc-pVnZ. b Same as maug-cc-pV(Q+d)Z. c Same as maug-cc-
pV(T+d)Z. d Same as maug-cc-pV(D+d)Z.
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structures, vibrational frequencies, and intermolecular inter-
action energies and a study by Kjaergaard et al.47 on
hydrogen bonded systems are more relevant to the question
of how many diffuse functions one should use for a diverse
set of molecular properties (Werner et al. also cite earlier
diverse benchmarking studies). Recently, basis sets have been
prepared specifically for use in F12 calculations.48 Those
basis sets are specifically limited to minimal augmentation,
but the reader was informed that “the inclusion of just s and
p diffuse functions may not be sufficient” in all cases, and
“further extension of the higher angular momentum functions
might then be considered.” Werner et al.46 employed these
minimally augmented basis sets and fully augmented ones
in their F12 benchmarking but did not consider intermediate
augmentation. In the present article, we will consider this;
in particular, we systematically explore various levels of
partial augmentation in both MP2 and MP2-F12 calculations
with databases for atomization energies, barrier heights,
hydrogen bond energies, ionization potentials, and electron
affinities.

It is an oversimplification to assume that “the more diffuse
functions, the better.” The size of the diffuse space of a basis
set is just one of the parameters of a basis set, and it must
be considered in conjunction with the space spanned by
primitive valence functions, the level of contraction, and the
number of polarization functions. Full augmentation with
many diffuse functions that make only a small difference in
the property to be calculated increases the size (and, one
hopes, the accuracy) of the basis set a given � level, but the
gain may be small relative to other ways to increase the
accuracy such as increasing the � level. In practice, when
attempting to improve a basis set, one should ask which
aspect of the basis set is most limiting at any given level,
and then one should improve that specific part of the basis
set first. We have found that this is not always the way
calculations are done. Very often, basis sets are fully
augmented or fully augmented on nonhydrogenic atoms
while staying at given � level when it would be more efficient
to do only a partial augmentation on nonhydrogenic atoms
and spend the saved resources by going to a higher � level
or adding more polarization functions.

The questions we are attempting to answer are the
following:

• Which molecular properties are most sensitive to the level
of augmentation of the diffuse space? What level of
augmentation is advisible for these properties?

• At what point is saturation of the diffuse space reached
for key properties such as barrier heights, electron affinities,
ionization potentials, noncovalent interaction energies, at-
omization energies, and bond energies?

• What is the right order of steps in improving the basis
set for a given problem? At a given � level and for a given
property, is it more beneficial to add more diffuse functions
or to attempt to go to the higher � sooner with a minimal or
intermediate number of diffuse functions?

A variety of ad hoc partially augmented basis sets have
been used for specific calculations in various publications.
Here, we put forward a systematic partial augmentation
scheme and test it carefully for MP2 and MP2-F12 calcula-

tions. The naming convention for the systematically partially
augmented basis sets is based on the months and involves
successively truncating the “aug” basis sets of Dunning and
co-workers to well-defined levels called “jul,” “jun,” “may,”
etc.

A second objective of the present article is to allow us to
compare the accuracy of MP2-F12 to that of MP2.

2. Definition of the New Basis Sets

In our calculations, we use the correlation consistent cc-
pV(n+d)Z basis sets of Dunning and co-workers with
spherical harmonic d, f, and g subshells. Notice that a cc-
pV(n+d)Z basis set for an atom lighter than Al is defined to
be the same as cc-pV(n+d)Z.10 Table 1 defines the diffuse
spaces of the fully and partially augmented basis sets. As
seen in the table, deleting all diffuse basis functions on
hydrogen and helium atoms from “aug” basis sets yields the
“jul” basis set, which has already been defined.17 The “jun”,
“may”, etc. basis sets are obtained by sequentially removing
the diffuse subshells on the heavy atoms, where “heavy
atoms” is used here as a synonym for atoms heavier than
He. The new basis sets are systematically convergent in that,
just as aug-cc-pV(n+d)Z converges to a fully augmented
complete-valence basis set as n increases, jun-cc-pV(n+d)Z
converges to a fully heavy-atom-augmented complete-
valence basis set as n increases, and so does may- or apr-.
As discussed in the Introduction, it has been known for a
long time that augmentation on heavy atoms is less important
than augmentation on hydrogen atoms.

3. Methods and Databases

All of the MP2 calculations for this paper (except when
timing MP2-F12 vs MP2) were carried out using the
Gaussian 0349 and Gaussian 0950 program packages. All of
the MP2-F12 calculations were performed using the MolPro
200951 program.

In order to test the performance of the partially augmented
basis sets, we have used previously optimized geometries
of the species contained in the DBH24/08,52,53 HB6/04,54

EA13/3,55,56 IP13/3,55,56 and AE657 databases.
These databases contain, respectively, 24 diverse barrier

heights, six hydrogen bond energies (four of which were used
for the present tests), 13 electron affinities, 13 ionization
potentials, and six atomization energies.

We carried out restricted single-point-energy MP2 and
MP2-F12 calculations for both open- and closed-shell
species. Results of these MP2 and MP2-F12 single-point
calculations using basis sets ranging from aug-cc-pV(n+d)Z
through partially augmented basis sets to nondiffuse cc-
pV(n+d)Z were then compared to MP2-F12/aug-cc-
pV(Q+d)Z values that should be close to the complete basis
set limit and that serve as a reference. MP2-F12/aug-cc-
pV(Q+d)Z data were generated for the following properties:

• 24 (forward and backward) barrier heights using qua-
dratic configuration interaction with single and double
excitations QCISD/MG3S geometries (listed in the DBH24/
08 database52,53) for the species (reactants, transition states,
and products) involved in the following 12 reactions:
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• the hydrogen bonding energy calculations for the
NH3-NH3, HF-HF, H2O-H2O, and NH3-H2O dimers for
the MC-QCISD/3 geometries; this subset of the HB6/04
database54 will be called HB4

• the electron affinities for C, S, O, Si, P, Cl, OH, SH,
PH, PH2, O2, S2, and Cl2 using QCISD/MG3S geometries
listed in EA13/3 database55,56

• the ionization potentials of the same 13 atoms and
molecules as for electron affinities for the QCISD/MG3S
geometries listed in the IP13/3 database55,56

• the atomization energies per bond for SiH4, SiO, S2,
propyne (C3H4), glyoxal (C2H2O2), and cyclobutane (C4H8)
were calculated using the QCISD/MG3S geometries in the
AE6 database.57

In all of our calculations, the Born-Oppenheimer elec-
tronic energies including nuclear repulsion were considered;
vibrational contributions were not included. Spin-orbit
energies were added (when nonzero) as in previous work.16,17

For this article, all of the MP2-F12/aug-cc-pV(n+d)Z
calculations were carried out using the aug-cc-pVnZ/JKFIT58

and aug-cc-pVnZ/MP2FIT59,60 density-fitting basis sets. For
all of the calculations involving nondiffuse (cc-pV(n+d)Z)
orbital basis sets, cc-pVnZ/JKFIT58 and cc-pVnZ/MP2FIT59,60

density fitting basis sets were used. In order to reduce the
cost of the calculations and at the same time pose a bigger
challenge for the partially augmented (month-cc-pV(n+d)Z)
sets, we used the density fitting basis sets recommended for
the cc-pVnZ basis sets. The density fitting basis sets might
not be completely converged for all basis sets, but they
should be close enough to convergence that their small extent
of incompleteness does not affect our conclusions.

All of the MP2-F12 calculations use the 3C ansatz with
orbital invariant amplitudes and were carried out with a full
nonlinear fit of the geminal expansion.

4. Results

In order to allow the assessment of computational costs
(computer time and storage) of the various basis sets, Table

2 lists the total numbers of contracted basis functions for all
of the calculations carried out for this article. This provides
representative relative numbers for typical applications. Table
3 summarizes relative computer timings normalized to the
least expensive basis set used (cc-pV(D+d)Z). For the ease
of estimating computational savings by using partially instead
of fully augmented basis sets at the same � level, we also
list timings normalized to the unaugmented basis set for the
same n.

Basis sets in the first column of all tables are listed in
order of decreasing size. In each case, the basis set listed
above the unaugmented basis set is the minimally augmented
(maug) basis set containing s and p functions on heavy atoms
(which means heavier than He) and no diffuse functions on
H and He atoms. Subminimal augmentation (diffuse s
functions on heavy atoms) gives results at best slightly better
than no augmentation and is not recommended. Therefore,
in this article, except for unaugmented results, no results are
presented for subminimal augmentation.

Both MP2 and MP2-F12 results are compared with MP2-
F12/aug-cc-pVQZ values. Tables 4-8 list mean signed
deviation (MSD) and mean unsigned deviation (MUD) from
this reference. Except for atomization energies, we define
MSD and MUD as

where N is the number of energetic data computed (24 for
barrier heights, 4 for hydrogen bonding energies, 13 for
electron affinities and ionization potentials), and di is the
deviation (in kcal/mol) of the ith value from the reference
value.

In order to report MSD and MUE for atomization energies
on per-bond basis, mean deviations, computed using eqs 13
and 14, were divided by the average number of bonds in the
AE6 database as in eqs 15 and 16.

Root mean square deviation values (RMSD) for all of the
properties are available in the Supporting Information. In
Tables 4-8, we provide mean deviations of MP2 (Tables
4-6) and MP2-F12 (Tables 6-8) results from the reference
values. We have also listed maximum unsigned deviations
(MaxUD) for completeness.

Counterpoise corrections61 are sometimes used to estimate
corrections for basis set superposition error, but such
corrections are problematic in terms of accuracy62 and
become increasingly complex as one considers systems with
more components63 and hence are often omitted. In Table
5, we present an analog of the triple-� results in Table 4 for

H + N2O T OH + N2 (1)

H + HCl T HCl + H (2)

CH3 + FCl T CH3F + Cl (3)

Cl- + CH3Cl T ClCH3 + Cl- (4)

F- + CH3Cl T FCH3 + Cl- (5)

OH- + CH3F T CH3OH + F- (6)

H + N2 T HN2 (7)

H + C2H4 T CH3CH2 (8)

HCN T HNC (9)

CH4 + OH T CH3 + H2O (10)

H + OH T O + H2 (11)

H + H2S T H2 + HS (12)

MSD ) 1
N ∑

i)1

N

di (13)

MUD ) 1
N ∑

i)1

N

|di| (14)

MSD ) 1
4.83N ∑

i)1

N

di (15)

MUD ) 1
4.83N ∑

i)1

N

|di| (16)
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the HB4 database. In comparison with the results given in
Table 4, the counterpoise-corrected results do not show
different trends or lead to different conclusions on augmenta-
tion, and the errors are increased upon making the “correc-
tion”. Therefore, to make the rest of the convergence tests
as straightforward as possible, no counterpoise corrections
are applied in Tables 4 or 6-8.

5. Discussion

In the Discussions and Conclusions (as in Table 3), we
abbreviate cc-pV(D+d)Z, cc-pV(T+d)Z, and cc-pV(Q+d)Z
as DZ, TZ, and QZ, respectively. Similarly, month-cc-
pV(n+d)Z is abbreviated in the text as month-nZ.

Tables 4-6 show the mean deviations of MP2 energies
computed with augmented, partially augmented, and not

augmented basis sets from the near-CBS reference values.
In all cases, for triple- and quadruple-� basis sets, the
difference in MUD for jul- and jun- basis sets compared to
aug- is usually small compared to the absolute value of the
deviations, and in most cases they are negligibly small. The
same holds true for jul-DZ.

The tables show many outstanding successes of partial
augmentation, especially for barrier heights and hydrogen
bond energies. For example, for barrier heights, aug-QZ, apr-
QZ, and QZ differ from the near-CBS reference value by
0.2, 0.3, and 1.2 kcal/mol, respectively, but Table 2 shows
that aug-QZ has about 50% more basis functions than apr-
QZ. A similar observation can be made for may-TZ. For
hydrogen bond energies, apr-QZ, may-TZ, and jul-DZ are
all more accurate than aug-QZ. The key point is not that
they are more accurate, which (obViously) arises mainly from
cancellation of errors, but that they are not significantly less
accurate.

A comparison of Tables 4 and 6 to Tables 7 and 8 shows
that MP2 results converge more slowly with respect to the
saturation of the diffuse space of the basis set than do MP2-
F12 calculations, as expected from the discussion in section
1. Tables 7 and 8 show that in MP2-F12 calculations, only
triple- and quadruple-� atomization energy calculations seem
to be insensitive to the addition of diffuse basis functions.
This is probably due to the fact that the underlying cc-
pV(n+d)Z basis set is sufficiently diffuse for n ) {T or Q}
and not diffuse enough for n ) D for the calculation of bond
energies. However, the inclusion of diffuse functions seems
to be crucial for all other properties, including (perhaps
surprisingly) ionization potentials.

It is interesting that for the tested properties the aug basis
sets never offer any significant improvement at either the
MP2 or MP2-F12 level over jul- basis sets. On the other
hand, the unaugmented basis sets usually have much higher
MUDs than partially augmented basis sets. Therefore,
partially augmented basis sets provide intermediate options
that are more balanced than either fully augmented or
unaugmented basis sets with respect to the computational
cost and the quality of the results.

Table 2. Number of Basis Functions Used in MP2 Calculations

Nbf
a sum

DBH24/08 HB4 EA13/3 IP13/3 AE6 totalb norm.c rel.d

aug-cc-pV(Q+d)Z 9129 4068 3218 3218 2528 22161 5.7 1.5
jul-cc-pV(Q+d)Z 7865 3460 3058 3058 2224 19665 5.1 1.3
jun-cc-pV(Q+d)Z 7262 3199 2770 2770 2044 18045 4.6 1.2
may-cc-pV(Q+d)Z 6793 2996 2546 2546 1904 16785 4.3 1.1
apr-cc-pV(Q+d)Z 6458 2851 2386 2386 1804 15885 4.1 1.0
cc-pV(Q+d)Z 6190 2735 2258 2258 1724 15165 3.9 1.0
aug-cc-pV(T+d)Z 5034 2208 1900 1900 1411 12453 3.2 1.5
jul-cc-pV(T+d)Z 4323 1866 1810 1810 1240 11049 2.8 1.4
jun-cc-pV(T+d)Z 3854 1663 1586 1586 1100 9789 2.5 1.2
may-cc-pV(T+d)Z 3519 1518 1426 1426 1000 8889 2.3 1.1
cc-pV(T+d)Z 3251 1402 1298 1298 920 8169 2.1 1.0
aug-cc-pV(D+d)Z 2387 1009 1024 1024 685 6129 1.6 1.6
jul-cc-pV(D+d)Z 2071 857 984 984 609 5505 1.4 1.4
jun-cc-pV(D+d)Z 1736 712 824 824 509 4605 1.2 1.2
cc-pV(D+d)Z 1468 596 696 696 429 3885 1.0 1.0

a Number of contracted basis functions used for all of the calculations in the database. b Sum of Nbf over all five databases. c Sum
normalized to cc-pV(D+d)Z. d Sum relative to cc-pV(n+d)Z for the same n.

Table 3. Timing Summary for MP2 and MP2-F12 for All
Species in the Databases

MP2 MP2-F12

basis seta norm.b rel.c norm. (MP2)b norm.d rel.e

aug-QZ 388.9 6.3 942.6 46.9 3.4
jul-QZ 154.4 2.5 492.4 24.5 1.8
jun-QZ 112.9 1.8 402.7 20.0 1.4
may-QZ 88.3 1.4 337.9 16.8 1.2
apr-QZ 72.3 1.2 303.0 15.1 1.1
QZ 62.1 1.0 278.4 13.9 1.0
aug-TZ 30.1 5.0 144.2 7.2 2.8
jul-TZ 15.6 2.6 80.3 4.0 1.5
jun-TZ 10.4 1.7 65.7 3.3 1.3
may-TZ 7.8 1.3 57.8 2.9 1.1
TZ 6.0 1.0 51.9 2.6 1.0
aug-DZ 2.4 2.4 38.1 1.9 1.9
jul-DZ 1.8 1.8 24.8 1.2 1.2
jun-DZ 1.3 1.3 22.1 1.1 1.1
DZ 1.0 1.0 20.1 1.0 1.0

a Labels month-nZ or nZ denote month-cc-pV(n+d)Z or
cc-pV(n+d)Z. b Sum normalized to MP2 with the same program on
the same machine with the smallest basis set used
(cc-pV(D+d)Z). c Sum relative to MP2 with the same program on
the same machine with the smallest basis set with the same n.
d Sum relative to MP2-F12 with the same program on the same
machine with the smallest basis set used. e Sum relative to
MP2-F12 with the same program on the same machine with the
smallest basis set with the same n.
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At any given � level (n) and augmentation level (month-),
if one can afford additional cost and wishes to improve the
quality of the calculations by increasing the size of the basis
set, one would only be interested in doing so if the larger
basis set offered significantly lower mean deviations. Mean
deviations in electron affinity listed in Table 7 show that
only partially augmented basis sets offer such an advantage.
To see this for MP2-F12 calculations, recall that in the tables
each basis set is larger than all those below it (as shown
quantitatively in Table 2). Then, consider starting with DZ
and moving up. The error in Table 7 decreases significantly
as we increase the basis set only through jun- and jul-, but

not for aug-. The higher, triple-� unaugmented basis set also
does not offer a decrease in error relative to that of jul-DZ.
Therefore, aug-DZ and -TZ should be skipped. The next basis
set to offer an improvement in the quality of the results is
jun-TZ. The jul-TZ basis set offers further improvement.
Then, aug-TZ and QZ can be skipped until improvement is
again found with apr-QZ. Similar conclusions are drawn from
other tables, for both MP2 and MP2-F12, except for
atomization energies at the triple- and quadruple-� levels
(Tables 6 and 8), which do not seem to require diffuse
functions.

The trend is even more striking for calculations without
F12. Consider, for example, the barrier height calculations
in Table 4. One achieves higher accuracy with apr-QZ than
with aug-TZ, jul-TZ, jun-TZ, or may-TZ, but simply going
to QZ without any diffuse functions is less accurate than
any of these triple-� levels. Table 3 shows that the cost
savings in using apr-QZ rather than aug-QZ to include the
diffuse space is more than a factor of 5. This is one of the
main lessons of the present study and is more important than
the small deviations from one MUD to another in the 0.5-0.8
kcal/mol range or the small deviations from one MUD to
another in the 0.15-0.3 kcal/mol range. Similarly, now
considering barrier heights in Table 4, TZ is inaccurate, but
may-TZ is more accurate than aug-DZ and is less expensive
than aug-TZ by about a factor of 4. Thus, in calculations
where one cannot afford to go all the way to aug-TZ, the
errors may be decreased considerably compared to TZ by
using intermediate augmentation. As a third example,
consider hydrogen bonding in Table 4. The main point is
not the small differences from one MUD to another in the
range 0.01-0.17 kcal/mol but rather the fact that even apr-
QZ accounts well for the effect of diffuse functions at the
quadruple-� level. Even may-TZ accounts well for them at
the TZ level, and even jun-DZ accounts well for them at the
DZ level. Usually, when diffuse functions are important, we
find that (n+1)Z is not more accurate than jul-nZ or jun-nZ.
In other words, the fully augmented and unaugmented basis
sets hardly ever seem to be good choices as compared to
the new intermediate basis set levels, and in almost all cases,

Table 4. Mean and Maximum Deviations of MP2 Barrier Height (kcal/mol), Hydrogen Bonding Energy (kcal/mol), and
Electron Affinity (kcal/mol) from Reference Value

barrier height hydrogen bonding electron affinity

MSD MUD MaxUD MSD MUD MaxUD MSD MUD MaxUD

aug-cc-pV(Q+d)Z -0.03 0.15 0.43 0.09 0.09 0.13 0.64 1.36 2.64
jul-cc-pV(Q+d)Z 0.06 0.19 0.57 0.01 0.01 0.02 0.68 1.41 2.64
jun-cc-pV(Q+d)Z 0.13 0.20 0.61 -0.01 0.02 0.03 1.14 1.70 3.18
may-cc-pV(Q+d)Z 0.20 0.25 0.78 -0.03 0.03 0.04 1.50 1.93 3.49
apr-cc-pV(Q+d)Z 0.20 0.29 0.89 0.01 0.02 0.04 1.97 2.28 3.93
cc-pV(Q+d)Z -0.40 1.18 8.27 0.38 0.38 0.49 7.18 7.18 3.18
aug-cc-pV(T+d)Z 0.01 0.49 1.05 0.17 0.17 0.21 1.90 2.28 4.29
jul-cc-pV(T+d)Z 0.19 0.58 1.39 0.04 0.04 0.08 2.01 2.38 4.29
jun-cc-pV(T+d)Z 0.49 0.66 2.14 -0.03 0.04 0.07 3.04 3.10 5.60
may-cc-pV(T+d)Z 0.65 0.79 3.05 0.05 0.09 0.10 4.47 4.47 6.96
cc-pV(T+d)Z -0.18 2.15 11.10 0.88 0.88 1.05 14.83 14.83 32.17
aug-cc-pV(D+d)Z -0.28 1.21 3.25 0.34 0.34 0.48 4.09 4.64 8.95
jul-cc-pV(D+d)Z 0.20 1.44 4.41 0.10 0.10 0.19 4.36 4.91 8.95
jun-cc-pV(D+d)Z 1.27 2.16 5.50 0.31 0.31 0.45 8.94 8.94 13.36
cc-pV(D+d)Z 0.08 3.92 15.81 1.93 1.93 2.44 30.26 30.26 61.09

Table 5. Mean and Maximum Deviations of MP2
Counterpoise-Corrected Hydrogen Bonding Energy
(kcal/mol) from the Reference Value

hydrogen bonding

MSD MUD MaxUD

aug-cc-pV(T+d)Z -0.24 0.24 0.28
jul-cc-pV(T+d)Z -0.29 0.29 0.36
jun-cc-pV(T+d)Z -0.38 0.38 0.45
may-cc-pV(T+d)Z -0.45 0.45 0.56
cc-pV(T+d)Z -0.51 0.51 0.81

Table 6. Mean and Maximum Deviations of MP2 Ionization
Potentials (kcal/mol) and Atomization Energies per Bond
(kcal/mol per Bond) from Reference Value

ionization potential atomization energy

MSD MUD MaxUD MSD MUD MaxUD

aug-cc-pV(Q+d)Z -2.00 2.26 7.52 -1.03 1.03 1.82
jul-cc-pV(Q+d)Z -2.02 2.27 7.52 -1.09 1.09 1.97
jun-cc-pV(Q+d)Z -2.27 2.47 7.86 -1.21 1.21 2.12
may-cc-pV(Q+d)Z -2.38 2.55 8.09 -1.26 1.26 2.18
apr-cc-pV(Q+d)Z -2.43 2.60 8.19 -1.28 1.28 2.19
cc-pV(Q+d)Z -2.55 2.70 7.86 -1.28 1.28 2.17
aug-cc-pV(T+d)Z -3.26 3.28 7.80 -2.44 2.44 4.28
jul-cc-pV(T+d)Z -3.28 3.30 7.80 -2.60 2.60 4.68
jun-cc-pV(T+d)Z -3.89 3.89 8.67 -2.86 2.86 5.08
may-cc-pV(T+d)Z -4.20 4.20 9.17 -2.98 2.98 5.19
cc-pV(T+d)Z -4.55 4.55 10.40 -3.01 3.01 5.09
aug-cc-pV(D+d)Z -6.25 6.25 10.99 -7.38 7.38 13.87
jul-cc-pV(D+d)Z -6.31 6.31 10.99 -7.69 7.69 14.68
jun-cc-pV(D+d)Z -8.65 8.65 13.81 -8.51 8.51 15.87
cc-pV(D+d)Z -10.23 10.23 19.13 -8.62 8.62 15.57
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truncation to a basis set intermediate between unaugmented
or fully augmented on only heavy atoms is the best choice.

An excessive number of diffuse functions not only
increases the cost but also often leads to difficult SCF
convergence, and as shown in Figure 1, it can increase the
basis set superposition error.

The fact that the aug-nZ basis sets approach the CBS limit
in a systematic way is often correctly considered to be one
of their chief advantages. However, if one accepts that diffuse
functions are not needed on hydrogenic atoms, a basis set
sequence such as jun-XZ (x ) D, T, Q, etc.) also approaches
the CBS limit systematically (i. e., is “convergent”), and it
does so in a more efficient manner. Thus, partially augmented
basis sets would appear to be very useful for focal point23,64

analysis.

We have not examined reduction in the number of
polarization functions, but previous work65 shows that
savings are possible in that area as well.

Another possible use of the partially augmented basis sets
is in dual-basis calculations where Hartree-Fock calculations
are performed in a small basis set and the post-Hartree-Fock
calculation is performed in a large set.66,67

The second objective of this article is to compare MP2-
F12 to MP2. Both kinds of calculations converge to the same
MP2 CBS limit, but at different rates. Comparing Table 4
to Table 7 shows that, for barrier heights, MP2-F12/jul-DZ
is more accurate than MP2/aug-TZ or MP2/aug-QZ. Fur-
thermore, MP2-F12/may-TZ is as accurate as MP2/jul-QZ.
For ionization potentials (Tables 6 and 8), MP2-F12/jul-DZ
is more accurate than MP2/jun-QZ. For atomization energies
(Tables 6 and 8), we find that MP2-F12/DZ is more accurate
than MP2/aug-QZ. However, MP2-F12 is not more accurate
than MP2 for hydrogen bonding.

6. Conclusions

Of all of the energetic molecular properties considered here,
unaugmented basis sets are adequate only for atomization
energies at the triple- and quadruple-� levels.

Both MP2 and MP2-F12 theories are sensitive to the
saturation of the diffuse space; however, in most cases

Table 7. Mean and Maximum Deviations of MP2-F12 Barrier Height (kcal/mol), Hydrogen Bonding Energy (kcal/mol), and
Electron Affinity from Reference Value

barrier height

MSE MUD hydrogen bonding electron affinity

DBH24 (DBH06a DBH18b) DBH24 (DBH06a DBH18b) MaxUD MSE MUD MaxUD MSD MUD MaxUD

aug-cc-pV(Q+d)Z 0.00c (0.00c 0.00c) 0.00c (0.00c 0.00c) 0.00c 0.00c 0.00c 0.00c 0.00c 0.00c 0.00c

jul-cc-pV(Q+d)Z 0.02 (0.00 0.02) 0.03 (0.02 0.03) 0.08 0.02 0.02 0.03 0.03 0.04 0.13
jun-cc-pV(Q+d)Z 0.02 (0.00 0.03) 0.03 (0.01 0.03) 0.08 0.02 0.02 0.02 0.10 0.10 0.14
may-cc-pV(Q+d)Z 0.03 (0.01 0.04) 0.04 (0.04 0.04) 0.10 0.02 0.02 0.03 0.27 0.27 0.42
apr-cc-pV(Q+d)Z 0.00 (-0.12 0.05) 0.08 (0.12 0.06) 0.40 0.08 0.08 0.10 0.71 0.71 0.91
cc-pV(Q+d)Z -0.51 (-2.07 0.00) 0.87 (3.04 0.15) 7.09 0.46 0.46 0.57 4.88 4.88 13.63
aug-cc-pV(T+d)Z 0.06 (-0.06 0.10) 0.11 (0.07 0.12) 0.77 0.04 0.04 0.04 0.23 0.23 0.36
jul-cc-pV(T+d)Z 0.09 (-0.04 0.14) 0.16 (0.09 0.18) 0.69 0.14 0.14 0.15 0.33 0.33 0.56
jun-cc-pV(T+d)Z 0.13 (0.03 0.16) 0.18 (0.14 0.20) 0.75 0.14 0.14 0.15 0.62 0.62 1.07
may-cc-pV(T+d)Z 0.16 (0.00 0.21) 0.25 (0.22 0.26) 1.12 0.24 0.24 0.28 1.86 1.86 2.47
cc-pV(T+d)Z -0.56 (-2.53 0.10) 1.44 (4.37 0.46) 9.24 1.09 1.09 1.27 9.79 9.79 22.66
aug-cc-pV(D+d)Z 0.03 (0.13 0.00) 0.26 (0.32 0.25) 0.69 0.08 0.08 0.10 1.02 1.02 1.83
jul-cc-pV(D+d)Z 0.15 (0.21 0.13) 0.39 (0.40 0.39) 1.32 0.38 0.38 0.46 1.18 1.18 1.78
jun-cc-pV(D+d)Z 0.54 (1.31 0.28) 0.84 (1.37 0.66) 2.19 0.56 0.56 0.70 4.27 4.27 5.71
cc-pV(D+d)Z -0.54 (-2.14 0.00) 2.66 (6.76 1.29) 12.38 2.31 2.31 2.86 19.64 19.64 39.98

a Reactions containing anions (Cl- · · ·CH3Cl, F- · · ·CH3Cl, OH- · · ·CH3F). b The rest of the reactions in DBH24/08 (not listed in a). c Zero
by definition.

Table 8. Mean and Maximum Deviations of MP2-F12
Ionization Potentials (kcal/mol) and Atomization Energies
per Bond (kcal/mol per Bond) from Reference Value

ionization potential atomization energy

MSD MUD MaxUD MSD MUD MaxUD

aug-cc-pV(Q+d)Z 0.00a 0.00a 0.00a 0.00a 0.00a 0.00a

jul-cc-pV(Q+d)Z -0.01 0.02 0.04 0.01 0.01 0.02
jun-cc-pV(Q+d)Z -0.04 0.04 0.06 0.00 0.01 0.01
may-cc-pV(Q+d)Z -0.09 0.09 0.13 -0.01 0.01 0.02
apr-cc-pV(Q+d)Z -0.15 0.15 0.23 -0.01 0.01 0.03
cc-pV(Q+d)Z -0.31 0.31 0.90 0.01 0.02 0.05
aug-cc-pV(T+d)Z -0.13 0.14 0.26 -0.03 0.04 0.06
jul-cc-pV(T+d)Z -0.17 0.17 0.25 -0.01 0.03 0.06
jun-cc-pV(T+d)Z -0.35 0.35 0.58 -0.03 0.04 0.08
may-cc-pV(T+d)Z -0.68 0.68 1.02 -0.04 0.04 0.11
cc-pV(T+d)Z -1.28 1.28 2.77 0.06 0.07 0.18
aug-cc-pV(D+d)Z -0.74 0.80 1.50 -0.19 0.22 0.46
jul-cc-pV(D+d)Z -0.99 1.01 1.62 -0.10 0.19 0.33
jun-cc-pV(D+d)Z -2.86 2.86 5.36 -0.06 0.23 0.35
cc-pV(D+d)Z -4.91 4.91 9.08 0.24 0.34 0.87

a Zero by definition.

Figure 1. Counterpoise corrections [kcal/mol] for hydrogen-
bonded dimers for triple-� basis sets.
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presented here, the full augmentation is unnecessary. Instead
of using fully augmented (aug) or unaugmented basis sets,
we recommend using the new partially augmented basis sets.

For MP2 calculations of properties requiring diffuse basis
functions, we recommend jun-QZ, jul-TZ, and jul-DZ for
especially reliable results, but the tables show that, except
for electron affinities (and therefore probably for most
properties involving anions), one can usually cut back to
may-QZ or jun-TZ.

In MP2-F12 calculations of properties sensitive to the
number of diffuse functions, we recommend using may-QZ,
jun-TZ, and jul-DZ, which offer considerable savings
compared to aug- basis sets and significant improvement over
unaugmented cc-pV(n+d)Z basis sets.
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Abstract: Spin-splittings of 57 octahedral first-row transition metal complexes calculated with
B3LYP are compared with a database of experimental spectra collected from the literature. A
variety of transition metal centers in various oxidation states and multiplicities along with a number
of different coordinating ligands are considered. Environmental effects have been included to
enable reasonable quantitative comparison with experiment. The manifold of states is studied
using initial guesses constructed from ligand field theory. A localized orbital correction (LOC)
model, referred to as DBLOC-DFT (d-block localized orbital corrected density functional theory),
systematically corrects B3LYP calculations using five parameters. The final results are a
considerable improvement over conventional DFT, bringing the mean unsigned error (MUE)
from 10.14 kcal/mol with a standard deviation of 4.56 to 1.98 kcal/mol with a standard deviation
of 1.62. Depending on the relative multiplicities of the ground and excited states, it is shown
that B3LYP*, which has 15% exact nonlocal exchange, can lead to larger errors with respect to
experiment than B3LYP. Application to 7 complexes from Swart et al. [J. Phys. Chem. A 2004,
108, 5479.] and 14 small-gap spin-crossover complexes, from the literature, shows the DBLOC
model provides good agreement with a variety of experimental data.

1. Introduction

Transition metals play very important roles in biochemistry
and materials science. The catalytic properties of metalloen-
zymes and other metal containing catalysts are a result of
special electronic structures of reactive intermediates. As
examples, consider the catalytic sites in methane monooxy-
genase1 and the blue ruthenium dimer2 for which the
catalytically competent species have unusually large metal
oxidation states along with important magnetic coupling
interactions. The high density of low lying electronic states
resulting from the metal atom can give rise to multiple
reactive channels that can utilize spin-crossover3-6 mecha-
nisms. Here, otherwise high energy barriers become low
energy through a facile change in spin multiplicity. Quali-
tatively, spin-crossover becomes possible when there is a
balance between the pairing energy of two electrons and the
ligand field splitting energy, ∆o, needed to traverse the t2g

f eg gap.3 Splitting energies depend on metal-ligand

interactions which range from weak interactions like simple
electrostatically perturbed lone pairs to stronger dative bonds
and finally more covalent bonds. In principle, these can be
systematically tuned so as to control relative spin state
energetics.

The energy difference between the t2g and eg sets of
orbitals, ∆o, has been found empirically to depend on the
coordinating ligands according to the spectrochemical
series7-11

as well as the oxidation state of the metal center and the
identity of the metal itself. Moving right in the series
increases ∆o, while decreasing the oxidation state of the metal
decreases ∆o so the balance of electronic effects becomes
important. A large value of ∆o signifies strong metal-ligand

* To whom correspondence should be addressed. E-mail:
rich@chem.columbia.edu.
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coupling, thereby raising the antibonding eg orbital energies,
oftentimes resulting in a low-spin ground state where the
complex would rather pair electrons than spend additional
energy in traversing the gap. Conversely, small values of
∆o typically lead to high-spin complexes.

Requiring an electronic structure method to be capable of
correctly predicting transition metal chemistry along with
exhibiting calculation speed capable of handling large
systems is a demanding request. It is well-known that the
computation of a property like the spin-splitting energy is
very sensitive to the quality of the underlying wave function.
Two separate questions to answer are: what is the ground
state multiplicity, and what is the energy for traversing the
spin gap? Inclusion of factors like multireference character,
dynamic correlation, spin-orbit coupling, relativity, vibronic
coupling, as well as antiferromagnetic or ferromagnetic
coupling for the case of transition metal clusters would be
required for very high-level calculations. High-level methods,
for example multireference many-body methods like coupled-
cluster theory for transition metal systems, in principle offer
a solution to the electronic problem, however, their compu-
tational cost, outside of massively parallel applications for
which system size is still relatively small, renders it less
useful in materials science and biology than density func-
tional theory (DFT).12-14

Hybrid DFT methods such as B3LYP, the principal
functional investigated in this work, provide an alternative
to accurate, but computationally expensive, wave function-
based approaches. Because even high-level approaches, such
as coupled-cluster with perturbative triples (CCSD(T)), can
be problematic for calculations involving transition metals,15

DFT approaches, which for many cases deliver reasonable
results, at present must be considered the method of choice
for these systems. However, over the past decade, significant
evidence has accumulated that even the best current DFT
functionals can display large errors for specific types of
transition metal energetics. As an example, different func-
tionals can yield very different answers for spin state
splittings by as much as 10-30 kcal/mol, and such errors
can be manifested in comparisons with experimental data,
for example in predicting the wrong ground state or in failure
to properly yield small splittings in finely tuned spin-
crossover complexes.

Despite the above observations, a detailed and compre-
hensive understanding of the performance of B3LYP, or any
other functional, for spin state energetics is not currently
available, in great part, because of the paucity and problem-
atic nature of the available experimental data. Hence, as an
initial step, we have constructed a chemically diverse
database of solution and crystalline experimental spectra of
57 octahedral first-row transition metal containing complexes
with different properties. Our database consists of 2 V,16,17

10 Cr,7,17-23 6 Mn,23-26 23 Ni,22,27-34 7 Fe,35-39 and 9
Co40-45 containing complexes with +2, +3, and +4 oxida-
tion states, total charges ranging from -4 to +4, multiplici-
ties ranging from 1 to 6, and total number of valence
electrons ranging from 2 to 8. Coordinating atoms include
C, N, O, S, F, and Cl with differing partial atomic charges,
and the smallest and largest ligands contain 2 and 96 atoms,

respectively. Ligands vary from mono- to hexa-dentate and
in all cases are lone pair coordinated, i.e. metallocenes and
other complexes with high hapticity are not considered here.

The variation in this database should be contrasted with
alternative data sources such as electron paramagnetic
resonance (EPR) or optical absorption measurements of spin-
crossover complexes, where as has recently been pointed out
by Deeth et al.,46 the vast majority of complexes have
aromatic nitrogens coordinated to Fe(II), and the ground
states are uniformly low-spin singlets, with the excited state
quintet requiring promotion of two electrons to a higher lying
d-orbital, for example t2g f eg. The spin-crossover data is
useful but the drastic limitations noted above, the significance
of which will become more apparent as we proceed with
our analysis, has not been generally recognized.

To isolate the errors in the electronic problem from any
potential errors because of the strong vibronic coupling
effects and nonradiative transitions present at the spin-
crossing seam, our database is based on equilibrium radiative
spin-forbidden transitions under the Born-Oppenheimer
approximation. Adiabatic potential energy surfaces are
adequate because only regions that are far from the crossing
are studied. These transitions are singly forbidden (the change
in the number of unpaired electrons in going to the excited
state is always two) d-d transitions that violate the spin
selection rule and so they are of low intensity. Typically they
show up in the optical absorption spectrum of the complex
as shoulders to more intense spin allowed metal-to-ligand
charge transfer (MLCT) or ligand-to-metal charge transfer
(LMCT) transitions. Forbidden transitions become more
intense by borrowing intensity from allowed transitions
through spin-orbit coupling.

With a large, diverse database in hand, we observe large,
but systematic, errors in the B3LYP computation of transition
metal spin state splittings. However, these errors do not
follow a pattern as simplistic as has been suggested in most
DFT studies of these splittings to date.47,48 While it is true
that for the great majority of the aromatic nitrogen dominated
spin-crossover complexes noted above (on which previous
analysis has been primarily based), B3LYP shows an
overstabilization of the high-spin state resulting in it being
the ground state. But as is shown in detail below, other types
of complexes can display very different behavior; for a
substantial number of cases, we find in fact that low-spin
states are very substantially overstabilized. A consequence
of considering this much broader range of experimental
systems is that solutions to the DFT spin-splitting problem
proposed previously, such as decreasing the amount of exact
nonlocal exchange in the hybrid functional, no longer yield
even qualitatively satisfactory results. Nevertheless, striking
regularities in the data are manifested, and a satisfactory
model containing a modest number of parameters, all of
which are physically based, can be constructed.

Most new DFT functional development has involved
optimization of parameters internal to the DFT energy
expression, as well as addition of new terms such as those
involving the kinetic energy.49,50 This approach has proved
fruitful with new functionals such as the meta-GGA func-
tional series of Truhlar and co-workers displaying substan-

20 J. Chem. Theory Comput., Vol. 7, No. 1, 2011 Hughes and Friesner



tially improved prediction capabilities for a variety of
properties.50 A second approach, specific to transition metals,
involves the adjustment of the amount of exact nonlocal
exchange in hybrid functionals, for example the B3LYP*
functional reduces the amount of exact nonlocal exchange
in B3LYP from 20% to 15%.48,51 This functional has been
calibrated primarily with spin-crossover data, which, as
discussed above, is apparently problematic.

Recently, we have introduced a simple, yet highly effective
alternative to these approaches, in which localized, valence-
bond-type empirical corrections are applied to specific
chemical groups, fitting the parameter values to experimental
data.15,52-55 These corrections represent an improved estima-
tion of nondynamical correlation effects in the targeted bonds
and lone pairs, which are assumed to be transferable for well-
defined localized chemical functionalities. Near-chemical
accuracy has been achieved for molecules containing second
and third-row atoms for thermodynamics, barrier heights, and
electron affinities and ionization potentials, for large and
diverse databases.15,52-55 An initial paper extending this
approach to transition metals was published several years
ago15 and yielded substantial improvements in energetics for
atoms and small transition metal species, primarily a metal
atom bonded to one small ligand. However, in that work we
did not consider realistic organometallic complexes, such as
those that comprise the present database.

In the present paper, we show that a suitably simple
empirical correction scheme, entirely consistent with our
previous work, and containing only five parameters which
are readily physically interpretable, yields a dramatic reduc-
tion in the mean unsigned error (MUE) of the computed spin
state gaps compared to experiment. The accuracy, MUE of
around 2 kcal/mol, is consistent with that obtained in our
previous transition metal work, and the MUE is somewhat
higher than that for organic systems (MUE of around 1 kcal/
mol) principally because of the lack of sufficient experimental
data and the noise inherent in that data.

2. Methods

For many complexes we used published X-ray crystal
structures for the initial geometries. In cases where these
were not available we sometimes found a crystal structure
for the complex with a different metal center or built the
complex from crystal structures of multiligand complexes
where only one ligand was of interest. The Cambridge
Structural Database56 was used. Especially for nickel-
containing complexes, for reasons discussed below, it was
sometimes necessary to use the minimized ground state
geometry as opposed to the crystal structure as the initial
structure for the excited state geometry minimizations.

All calculations were done using Jaguar version 7.557 with
the relativistic effective core potential LACV3P, a triple-�
contraction of the LACVP58 basis set, for metal centers and
6-311G for the rest of the atoms. This basis set was chosen
because it was successfully used in developing a localized
orbital correction (LOC) model for transition metal atoms15

and has been shown in the literature to work well in many
standard DFT applications to metal containing systems.
Previous work has shown that while the LOC corrections

for metal atoms15 do show some basis set dependence the
differences in average error of the optimized model between
the medium (LACV3P) and very large (QZVP(-g)) basis sets
are small considering the great variety in the transition metal
database.

Adiabatic spin state energy gaps are calculated using fully
unrestricted pseudospectral B3LYP, with a continuum di-
electric employed to model environmental effects. The
Poisson-Boltzmann solver in Jaguar57 was used. We used
dielectric constant values for whatever solvent was used in
obtaining the spectra experimentally, for example water has
a value of 80.4, or in the case of crystalline spectra a low
dielectric constant of 2.0 is used. Zero-point energy and
entropic corrections were not determined because their
difference with respect to states of different spin multiplicities
are typically small.

The method of Langlois and co-workers59 was used to
generate initial guess density matrices, which take into
account d-d electron repulsion and metal-ligand interac-
tions. These guesses help to alleviate some of the difficulties
that quantum chemical methods have with convergence to
the ground states of the various multiplicities in transition
metal containing systems. To ensure a more thorough search
of state space we construct a series of initial guesses given
a user specified table of atomic formal charges, localized
multiplicities, and in the case of ferromagnetic or antifer-
romagnetic coupling, the number of coupled alpha- and beta-
spins. In the case of magnetic coupling, broken symmetry
DFT was used.60 The default value of the relative energy
threshold (keyword opt325) for acceptable initial guess
electron configurations was changed from 0.1 hartree to 1.0
hartree to explore each of the different states generated by
permuting single and paired electrons among the d-orbitals.
Note that there were many times when the initial guess
energy ordering of states, as well as obviously their relative
magnitudes, was different from the converged UDFT values
because of qualitative differences in the density matrices.
Usually for calculations using the ground state multiplicity
the lowest energy states are obtained using low values of
the istate keyword, however, there were some exceptions.
For calculations using the excited state multiplicities, this
was certainly not true. Therefore the full range of istate
values was considered in each case; this range can be
precomputed using simple combinatorics

where s and d are the number of singly and doubly occupied
orbitals respectively in the set of five d-orbitals for the
complex of a given multiplicity. The istate keyword
simply specifies an initial guess for the electronic configu-
ration of the metal complex in terms of singly and doubly
occupied d-orbitals.

Adiabatic spin-forbidden transition energies are calculated
using the lowest energy state of each spin multiplicity. To
compare the calculated adiabatic transition energies with
experimental vertical transitions the vibrational relaxation
energies must be estimated. Franck-Condon factors could
be calculated,61 and the vibrational relaxation energy deter-

istate ∈ [1,
5!

s!d!(5 - s - d)!] (1)
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mined as a sum of vibrational energies up to the state with
the most intense transition; however, we choose to take the
difference between peak and onset values of the spin-
forbidden shoulder from the experimental spectra so as to
avoid, among other potential complications, having to
calculate intensity contributions from the environment. Direct
calculation of vertical transition energies is avoided because
they would, at least in certain cases where the equilibrium
geometries of the two states are significantly different,
introduce additional errors inherent in nonequilibrium UDFT
calculations. Additionally, some SCF convergence issues
were found for vertical calculations. The protocol we have
adopted enables a direct comparison between theory and
experiment for the energy gaps between different spin states.

3. Results and Discussion

3.1. Database of t2g f t2g, eg f eg, t2g f eg, and eg f
t2g Spin-Forbidden Transitions for Octahedral
Transition Metal Complexes. Table 1 shows the octahedral
metal complexes in the DBLOC (d-block localized orbital
corrected) database, including t2g f t2g, eg f eg, t2g f eg,
and eg f t2g ground to spin-forbidden excited state transi-
tions. Table 1 of the Supporting Information shows models
of the t2g f t2g complexes along with the names to which
they will be referred (see Supporting Information Table 4

for a list of descriptors). There are a total of 16 complexes,
10 Cr(III), 1 Cr(IV), 2 Mn(III), 1 Mn(IV), and 2 V(III), of
this type. From Table 1 note that crf6 is listed twice, once
as Cr(III)F6

-3 and once as Cr(IV)F6
-2. The molecular orbital

diagrams are shown in Table 1. These were determined using
a combination of experimental results, ligand field theory,
Mulliken spin densities and populations, and natural electron
configurations.62 A more detailed example of a molecular
orbital diagram from hybrid DFT calculations on octahedral
transition metal complexes was recently given by Watts et
al.63 It can be seen that energy differences between orbitals
belonging to a given manifold, t2g or eg, are generally small.
All complexes have high-spin ground states with the total
number of valence d-electrons ranging from 2 to 4 with
ground state multiplicities of 3 or 4 and excited state
multiplicities of 1 or 2, respectively. In this work, the term
“intermediate-spin” is not used because only two states are
mainly considered, that is, one “low-spin” and one “high-
spin. For example, a triplet might be referred to as ”high-
spin“ relative to a “low-spin” singlet even though it is
possible there could be an even higher spin state as in a
quintet.

The same summary is provided for complexes with eg f
eg spin-forbidden transitions in Table 1 (see Supporting
Information Tables 2 and 5 for models of complexes and a

Table 1. Molecular Orbital Diagrams for Octahedral Metal Complexes with Spin-Forbidden Transitions
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list of descriptors). In this case, there are 23 octahedral
complexes all with d8 Ni(II) centers. All transitions are from
a high-spin triplet ground state to an excited state singlet.

Spin-forbidden transitions, t2g f eg or eg f t2g, are
considered at the bottom of Table 1 (see Supporting
Information Tables 3 and 6 for models of complexes and a
list of descriptors). There are 20 complexes including 1
Co(II), 8 Co(III), 1 Fe(II), 7 Fe(III), and 3 Mn(II). The
various molecular orbital diagrams are shown in Table 1. In
this case, all cobalt complexes have low-spin singlet ground
states, with the exception of cof6 which has a quartet ground
state. A pair of fecn6 complexes serve as examples of other
low-spin ground state complexes, Fe(III)(CN)6

-3 as a doublet
ground state and Fe(II)(CN)6

-4 as a singlet ground state.
Fe(III)(en)3

+3 has a doublet ground state. The rest of the
complexes have a sextet ground state.

Minimized metal to coordinating atom bond distances are
shown in Supporting Information Tables 7-9 for B3LYP/
LACV3P minimizations in the appropriate environments for
each of the spin states considered. During the minimizations,
among a few other complexes, the excited state d8 Ni(II) Oh

complexes with coordinating nitrogens tended to drop to D4h

symmetry and become square planar when using B3LYP
with a variety of basis sets. Most complexes are calculated
to be slightly distorted octahedra where the metal-ligand
bond distances are the degrees of freedom that undergo the
largest change with a spin-forbidden transition. Bond dis-
tances are generally short in three particular cases (1) for
states of lower multiplicity, (2) for complexes with a large
number of valence electrons, and (3) for complexes with
large metal oxidation states (see Supporting Information for
a discussion).

3.2. Estimates of Vibrational Relaxation Energies.
Estimates for the nonradiative vibrational relaxation energy
for the νk f ν0 transition on the excited state surface are
shown in Table 2. The difference in energy between the spin-
forbidden highest intensity spectral peak νk and the lowest
intensity spectral onset ν0 is determined by using digitizing
software.64 Spin-forbidden shoulder peaks are extracted from
higher intensity MLCT and/or LMCT peaks of the experi-
mental spectra and fit to a dilated Lorentzian with two free
parameters a and b

where x0 is the peak position. Relaxation energies for the
experimental spectra of a number of different metal com-
plexes with t2g f t2g and eg f eg spin-forbidden transitions
were determined in this way. Using a unique vibrational
relaxation energy for each complex was not possible, nor
needed due to some inherent transferability in the electronic
structure, because experimental spectra were not available
in every case. Average peak to onset values of 1575 cm-1

(4.50 ( 1.41 kcal/mol) and 3206 cm-1 (9.17 ( 2.12 kcal/
mol) were found. The results for cracac2im2py and
niacac2im2py experiments, top and middle of Table 2, are
representative examples of mean vibrational relaxation
energies of t2g f t2g and eg f eg metal complexes and thus

are shown. More examples showing the fitted and experi-
mental shoulder peaks for the t2g f t2g and eg f eg spin-
forbidden transitions along with estimates for the vibrational
relaxation energies are shown in Table 10 of the Supporting
Information. For each of the types of transitions the estimates
of the vibrational relaxation energies are within 1-2 kcal/

L (x) ) a( b

(x - x0)
2 + b2) (2)

Table 2. Estimate of the Nonradiative Relaxation Energy
from the Highest (Spectral Peak, νk) to Lowest (Spectral
Onset, ν0) Intensity Vibrational States for the Excited
Electronic Statea

a Vibrational relaxation energies of 1575 (t2g f t2g top), 3206 (eg

f eg middle), and 2464 cm-1 (t2g f eg or eg f t2g bottom) are
obtained by subtracting the low intensity spectral onset (left) from
the high intensity spectral peak. Spin-forbidden peaks, which
typically show up as shoulder peaks to more intense MLCT or
LMCT spin-conserving transitions, were resolved using digitizing
software,64 which extracts the coordinates from the experimental
spectra shown in blue. These results were fit to a dilated
Lorentzian, shown in red, with two free parameters.
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mol of each other. The vibrational relaxation energy for the
eg f eg complexes is larger than that for the t2g f t2g

complexes because the later transition involves an excitation
within the nonbonding t2g manifold, and so, there are less
vibrational modes excited than for an excitation within the
antibonding eg manifold. This is in agreement with the
observation that the change in the average calculated metal
to ligand bond distances accompanying excitation are greater
for the eg f eg complexes than for the t2g f t2g complexes.
Subtracting these values from the experimentally determined
peak spin-forbidden transition energies allows direct com-
parison with calculated adiabatic transitions.

An estimate of the vibrational relaxation energy for the
spin-forbidden t2gf eg or egf t2g transitions was determined
using two different protocols. The first protocol involved
fitting the shoulder peaks of the experiments for this class
of complexes as was done for the t2g f t2g and eg f eg

transitions (see Table 2 and Supporting Information Table
10 for examples). The second protocol was to fit the
vibrational relaxation energies of the t2g f t2g (4.50 ( 1.41
kcal/mol) and eg f eg (9.17 ( 2.12 kcal/mol) transitions
determined above with their adiabatic changes in bond
distances and interpolate the vibrational relaxation energy
for the t2g f eg or eg f t2g class of complexes. Using the
average calculated metal-ligand bond distances, and one
standard deviation to account for uncertainty, with values
of 0.02 (t2g f t2g), 0.15 (eg f eg), and 0.12 Å (t2g f eg or
eg f t2g) (see the geometry section of the Supporting
Information) an estimate for the vibrational relaxation energy
was determined to be around 2800 cm-1 which is between
the values determined for t2g f t2g and eg f eg transitions.
The fitting of the shoulder peaks also predicts the relaxation
energy to lie between the relaxation energies of the t2gf t2g

and eg f eg transitions (see Supporting Information Table
10). Lastly an average of the t2gf t2g and egf eg vibrational
relaxation energies provides a further comparison. The
difference in estimates between the protocols is small, about
1 kcal/mol, considering the approximate 2 kcal/mol MUE
we are aiming at in this work. The final estimate for the
vibrational relaxation energy of the t2g f eg or eg f t2g

transitions is taken as 6.84 ( 1.68 kcal/mol. As previously
mentioned this vibrational relaxation energy correction falls
between the values determined for t2g f t2g and eg f eg

transitions because here a single electron is moved to or from
an antibonding eg orbital as opposed to moving an electron
within nonbonding t2g or antibonding eg and so the effective
response of the eg orbitals is intermediate. Further support
for obtaining vibrational relaxation energies using this
protocol is provided by noting that while the parameters of
the DBLOC model were derived using vibrational relaxation
corrected experimental gaps, those same DBLOC parameters
provide very good results in comparison to experiments on
near zero spin-crossover complexes for which the vibrational
relaxation energy correction is zero.

3.3. t2gf t2g Energetics. A summary of experimental and
calculated splittings in a dielectric continuum environment
are shown in Tables 3 and 4 for the t2gf t2g spin-forbidden
transitions. Experimental values, from which the 4.50 kcal/
mol vibrational relaxation energy has been subtracted, range

from 23.99 kcal/mol for vurea6 to 46.55 kcal/mol for
mn2p2pameth2. With the exception of mn2p2pameth2 the
experimental spin-forbidden transition energies cluster ac-
cording to the molecular orbital diagrams at around 25 kcal/

Table 3. Experimental and Calculated Spin-Forbidden
Transition Energies (kcal/mol) in a Dielectric Continuum
Environmenta

complex mult. 〈S2〉 exp. B3LYP B3LYP error

cr223tetcl2 2 0.83 36.53 49.14 -12.61
cr223tetcl2 4 3.78 0.00 0.00 0.00
crcn6 2 0.76 31.00 47.47 -16.47
crcn6 4 3.78 0.00 0.00 0.00
crcyclamncs2 2 0.79 34.54 49.51 -14.97
crcyclamncs2 4 3.78 0.00 0.00 0.00
cren3 2 0.78 38.67 54.09 -15.42
cren3 4 3.78 0.00 0.00 0.00
crf6 1 0.00 28.09 42.68 -14.59
crf6 3 2.02 0.00 0.00 0.00
crnh34cl2 2 1.03 36.95 51.80 -14.85
crnh34cl2 4 3.78 0.00 0.00 0.00
crnh36 2 0.78 39.15 55.50 -16.35
crnh36 4 3.77 0.00 0.00 0.00
crox3 2 0.86 36.53 48.83 -12.31
crox3 4 3.77 0.00 0.00 0.00
mncn6 1 0.00 24.10 35.45 -11.36
mncn6 3 2.03 0.00 0.00 0.00
mnf6 2 0.81 41.24 53.01 -11.77
mnf6 4 3.79 0.00 0.00 0.00

a For a pure spin ground state to a pure spin excited state, t2g

f t2g, the transition energy is larger than experiment.

Table 4. Experimental and Calculated Spin-Forbidden
Transition Energies (kcal/mol) in a Dielectric Continuum
Environmenta

complex mult. 〈S2〉 exp. B3LYP B3LYP error

cr223tetcl2 2 1.75 36.53 25.17 11.36
cr223tetcl2 4 3.78 0.00 0.00 0.00
cracac2im2py 2 1.96 35.53 23.97 11.56
cracac2im2py 4 3.01 0.00 0.00 0.00
crccsime36 2 1.76 33.52 22.95 10.57
crccsime36 4 3.79 0.00 0.00 0.00
crcn6 2 1.76 31.00 23.54 7.46
crcn6 4 3.78 0.00 0.00 0.00
crcyclamncs2 2 1.76 34.54 24.78 9.76
crcyclamncs2 4 3.78 0.00 0.00 0.00
cren3 2 1.75 38.67 27.04 11.63
cren3 4 3.78 0.00 0.00 0.00
crf6 2 1.75 40.37 25.89 14.48
crf6 4 3.76 0.00 0.00 0.00
crf6 1 1.00 28.09 13.13 14.96
crf6 3 2.02 0.00 0.00 0.00
crnh34cl2 2 1.75 36.95 26.08 10.87
crnh34cl2 4 3.78 0.00 0.00 0.00
crnh36 2 1.75 39.15 26.78 12.36
crnh36 4 3.77 0.00 0.00 0.00
crox3 2 1.75 36.53 24.58 11.95
crox3 4 3.77 0.00 0.00 0.00
mn2p2pameth2 1 0.00 46.55 39.94 6.62
mn2p2pameth2 3 2.02 0.00 0.00 0.00
mncn6 1 1.01 24.10 12.54 11.56
mncn6 3 2.03 0.00 0.00 0.00
mnf6 2 1.76 41.24 26.74 14.50
mnf6 4 3.79 0.00 0.00 0.00
vf6 1 1.00 24.66 12.53 12.13
vf6 3 2.00 0.00 0.00 0.00
vurea6 1 1.00 23.99 13.31 10.68
vurea6 3 2.01 0.00 0.00 0.00

a For a pure spin ground state to a contaminated spin excited
state, t2g f t2g, the transition energy is smaller than experiment.
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mol for Cr(IV)F6
-2, mncn6, vf6, and vurea6, and at around

37 kcal/mol for the rest of the complexes. The DFT results
cluster similarly. Note that the set of complexes that cluster
around 25 kcal/mol are those that are ground state triplets,
as opposed to ground state quartets like the other complexes,
and so the lower spin-forbidden transition energy is attributed
to a smaller spin-spin stabilization energy as can be seen
in the molecular orbital diagrams in Table 1. In both tables,
B3LYP predicts the correct ordering of ground and excited
state multiplicities in every case. The effects of the environ-
ment were found to be significant for some of the highly
charged complexes and in aligning the states, that is, reducing
the standard deviation in the errors. Preliminary vacuum
results for the chromium series, confining ourselves at the
time to only the first couple of istate values, showed wildly,
seemingly random, differing results for the spin-forbidden
transition energies, by as much as 12 kcal/mol. With the use
of solvent they were later found to correspond to different
electronic states.

Table 3 shows that the B3LYP/LACV3P predicts one
excited state to lie above the experiment by about 14 kcal/
mol while in Table 4 it predicts a different excited state to
lie below the experiment by about 11 kcal/mol. These are
the two low-lying states present in the excited state manifold.
Given that spin-forbidden transitions have zero dipole
oscillator strength, some means of calculating the spin-
forbidden transition intensity, Franck-Condon intensities61

and potentially spin-orbit coupling terms65 would be neces-
sary to definitively tell which state corresponds to the correct
mapping onto the shoulders observed in the experimental
spectrum. Comparing Tables 3 and 4 shows that the high-
energy state is a more restrictive spin pure state, while the
low energy state is spin contaminated with the high-spin
ground state. All ground states are pure spin with the
exception of cracac2im2py. Three key facts suggest that the
lower of the two spin states obtained from our B3LYP
calculation is in fact the state corresponding to the shoulder
seen in the optical absorption spectrum. First, as noted above,
this state has ground state multiplicity mixed into the wave
function, which facilitates the borrowing of intensity as
compared to the higher energy state, which has no such
admixture. Second, the higher energy state is not present in
a significant number of our B3LYP computations, whereas
the lower state is always present. This could be the result of
failure to employ a suitable initial guess, but it also may be
the case that the state is mixed with other excited states or
has moved to a substantially higher energy. Third, the
shoulder is the lowest-energy feature in the experimental
optical absorption spectrum, and asserting its correspondence
with the lowest-energy computed DFT state makes sense.
Additionally, similar reasoning is used in a recent article by
Watts et al.63 where hybrid DFT methods are able to
reproduce the experimental observation that temperature
dependent magnetic moments of some iron-porphyrin com-
plexes clearly show high-spin states for some ligands and a
mix of high and intermediate spin states for others thereby
resulting in a calculated pure spin state for the former and a
mixed spin state for the later. On the basis of these
arguments, we shall assume the stated correspondence in the

analysis that follows. The achievement of consistency and
accuracy in the numerical results for the energetics,
if attained, will provide further evidence that this fundamental
assumption that we are making is in fact correct.

Grouping the metal complexes in Table 1 according to
molecular orbital diagrams and comparing to Table 4 shows
that the average error for t2g

2 , t2g
3 , and t2g

4 configurations is
12.59 kcal/mol, 11.50 kcal/mol, and 9.09 kcal/mol. B3LYP/
LACV3P clearly has a large intrinsic error in the pairing of
two t2g electrons and smaller errors for the spin-spin
interactions. A preliminary systematic correction scheme in
which t2g

2 and t2g
4 are treated as identical cases predicts a

pairing correction of around 10 kcal/mol. The most striking
characteristic of the data in Table 4 is that the errors,
compared to experiment, are tightly grouped around the value
of 10 kcal/mol, and hence a single empirical parameter of
this magnitude can drastically reduce the error for complexes
of the type t2g f t2g. We interpret this value as the B3LYP/
LACV3P error that is manifested when a d-electron in an
organometallic complex is moved from a singly occupied
t2g orbital to another singly occupied t2g orbital to form a
doubly occupied t2g orbital. The sign of the correction implies
that the low-spin form is overstabilized with respect to
experiment. This is consistent with our previous work.15,52

There, we observed that specific types of orbitals can
manifest overbinding, due to overestimation of nondynamical
correlation effects. The d-orbitals have a different shape and
size, and further interact with ligands, hence the errors seen
here are different from those in a bare metal atom.15 We
employ the same value, around 10 kcal/mol, of this correction
for all metals in the t2g f t2g database and for all oxidation
states. Whether the identical value can be used for the eg

manifold is addressed in the next section. In our final
empirical model, there are also corrections due to differing
numbers of spin-spin interactions in the ground and excited
states; this correction is relatively small, and is discussed
further below when we present the final model which is
optimized by least-squares fitting to all of the experimental
data simultaneously.

3.4. eg f eg Energetics. Energies for the eg f eg spin-
forbidden transitions of the Ni(II) complexes are shown in
Table 5. Experimental triplet to singlet transitions, which
have been reduced by 9.17 kcal/mol for the vibrational
relaxation energy, range from 23.14 kcal/mol for nitach3mepyr
to 33.72 kcal/mol for nif6. Table 5 shows the lower-energy
spin-contaminated excited state, which has similar spin
expectation values and errors in the energies as those values
from Table 4. This is as expected because in both cases the
molecular orbital diagrams in Table 1 show that the differ-
ences in the electronic structures between ground and excited
states are simply the pairing of two electrons. The average
error for the spin-forbidden transition energies is around 10
kcal/mol, a value consistent with the t2g f t2g transitions.
This consistency validates both the protocol for analyzing
the experimental data and the theoretical model explaining
the origin of the DFT error in splittings for cases in which
there is transfer of an electron within the t2g or eg manifolds,
as opposed to between manifolds.
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3.5. t2g f eg and eg f t2g Energetics. There is much
greater variation in the electronic structures shown in Table
1 for the last set of spin-forbidden transitions because there
are both excitations, t2g f eg, and de-excitations, eg f t2g,
on going from a ground state of one multiplicity to an excited
state of another multiplicity. The t2g f eg and eg f t2g

database has the largest variation in experimental results with
transition energies ranging from 11.75 kcal/mol for fethio-
carbamate3 to 60.93 kcal/mol for Fe(II)(CN)6

-4. Please see
the Supporting Information discussion section for more
details about the experimental results. Here all of the cobalt
complexes, with the exception of cof6, along with the two
fecn6 complexes (Fe(II)(CN)6

-4 and Fe(III)(CN)6
-3) and the

feen3 complex, have low-spin ground states while the rest
of the complexes have high-spin ground states like the t2g

f t2g and eg f eg complexes. Any set of empirical
corrections to the B3LYP results must be robust enough to

ensure both consistency and accuracy across this database,
a task which may be challenging considering the substantial
variation observed in the B3LYP error in Table 6. Emphasis
is on comparing the B3LYP with the experimental spin-
forbidden transition energies keeping in mind the ligand field
splitting parameter, ∆o, that empirically depends on ligands
according to the spectrochemical series as well as on metal
oxidation state.

While an electron changes manifolds, t2g f eg or eg f
t2g, the cases being considered here still involve intercon-
version between two singly occupied orbitals and one doubly
occupied orbital, although the singly occupied orbitals are
now in two different manifolds. Thus, the pairing correction
described previously will still be enforced, as will the
spin-spin interaction correction. However, a major new
possible source of error has been introduced, which is the
DFT calculation of the splitting between the t2g and eg

manifolds. From the data in Table 6, it is clear that this error
must be significant, as the error pattern across the various
complexes is quite different from the uniformity seen in the
previous two classes of complexes, exhibiting substantial
variation in magnitude.

Table 5. Experimental and Calculated Spin-Forbidden
Transition Energies, eg f eg, (kcal/mol) in a Dielectric
Continuum Environment

complex mult. 〈S2〉 exp. B3LYP B3LYP error

ni12dimeim6 1 1.00 29.09 18.27 10.82
ni12dimeim6 3 2.00 0.00 0.00 0.00
ni1meim6 1 1.00 28.43 16.94 11.48
ni1meim6 3 2.00 0.00 0.00 0.00
ni2meim6 1 1.00 28.47 18.10 10.37
ni2meim6 3 2.00 0.00 0.00 0.00
niacac2im2py 1 1.77 28.00 18.14 9.86
niacac2im2py 3 3.78 0.00 0.00 0.00
nibipy3 1 0.00 25.11 13.07 12.04
nibipy3 3 2.00 0.00 0.00 0.00
nibpm2no3 1 0.92 27.64 15.76 11.88
nibpm2no3 3 2.00 0.00 0.00 0.00
nidmso6 1 1.00 30.94 17.46 13.48
nidmso6 3 2.01 0.00 0.00 0.00
nidpdpm2h2o2 1 1.00 28.95 17.66 11.29
nidpdpm2h2o2 3 2.00 0.00 0.00 0.00
nidpdpm2no3h2o 1 0.99 28.95 17.22 11.74
nidpdpm2no3h2o 3 2.00 0.00 0.00 0.00
nidpdpmno32 1 0.10 28.95 14.02 14.94
nidpdpmno32 3 2.00 0.00 0.00 0.00
nidpdpmno32ch3cn 1 0.89 28.95 17.22 11.73
nidpdpmno32ch3cn 3 2.00 0.00 0.00 0.00
niedta 1 1.00 27.00 16.84 10.16
niedta 3 2.00 0.00 0.00 0.00
nien2scn2 1 0.97 27.03 15.11 11.92
nien2scn2 3 2.00 0.00 0.00 0.00
nien3 1 0.71 26.08 8.09 17.99
nien3 3 2.00 0.00 0.00 0.00
nif6 1 1.00 33.72 19.41 14.31
nif6 3 2.00 0.00 0.00 0.00
nigly3 1 1.00 28.29 17.42 10.87
nigly3 3 2.00 0.00 0.00 0.00
nih2o6 1 0.91 33.03 18.99 14.04
nih2o6 3 2.00 0.00 0.00 0.00
ninh36 1 1.00 28.23 17.35 10.87
ninh36 3 2.00 0.00 0.00 0.00
niphen3 1 0.10 25.16 7.84 17.32
niphen3 3 2.00 0.00 0.00 0.00
nipyrazole6 1 1.00 28.86 17.52 11.34
nipyrazole6 3 2.00 0.00 0.00 0.00
nitach3mepyr 1 1.00 23.14 16.64 6.51
nitach3mepyr 3 2.01 0.00 0.00 0.00
nitpm2 1 1.00 27.78 17.54 10.24
nitpm2 3 2.01 0.00 0.00 0.00
nitpmno32 1 0.91 27.58 17.87 9.71
nitpmno32 3 2.00 0.00 0.00 0.00

Table 6. Experimental and Calculated Spin-Forbidden
Transition Energies, t2g f eg or eg f t2g, (kcal/mol), in a
Dielectric Continuum Environment

complex mult. 〈S2〉 exp. B3LYP B3LYP error

coamn3s3sarh 1 0.00 0.00 0.00 0.00
coamn3s3sarh 3 2.21 33.61 21.99 11.62
coamn5ssarh 1 0.00 0.00 0.00 0.00
coamn5ssarh 3 2.11 32.48 24.09 8.38
coen3 1 0.00 0.00 0.00 0.00
coen3 3 2.04 32.33 29.32 3.01
coetn4s2amp 1 0.00 0.00 0.00 0.00
coetn4s2amp 3 2.13 32.62 25.27 7.35
cof6 2 1.75 43.20 31.76 11.44
cof6 4 3.75 0.00 0.00 0.00
col2 1 0.00 0.00 0.00 0.00
col2 3 2.04 23.74 21.97 1.77
con3s3 1 0.00 0.00 0.00 0.00
con3s3 3 2.18 34.72 22.36 12.36
conh35soch32 1 0.00 0.00 0.00 0.00
conh35soch32 3 2.04 26.22 23.42 2.80
conh36 1 0.00 0.00 0.00 0.00
conh36 3 2.04 30.33 29.79 0.55
fecat3 4 3.79 22.61 22.59 0.02
fecat3 6 8.76 0.00 0.00 0.00
fecn6 1 0.00 0.00 0.00 0.00
fecn6 3 2.04 60.93 37.40 23.52
fecn6 2 0.76 0.00 0.00 0.00
fecn6 4 3.80 45.14 28.58 16.57
feen3 2 0.79 0.00 0.00 0.00
feen3 4 3.81 18.89 20.91 -2.02
feeta3 4 3.79 25.19 21.87 3.32
feeta3 6 8.76 0.00 0.00 0.00
feh2o6 4 3.77 29.19 23.84 5.35
feh2o6 6 8.76 0.00 0.00 0.00
fethiocarbamate3 4 3.99 11.75 6.57 5.18
fethiocarbamate3 6 8.76 0.00 0.00 0.00
fetrencam 4 3.80 22.90 24.21 -1.31
fetrencam 6 8.76 0.00 0.00 0.00
mnden2 4 3.77 39.05 28.64 10.42
mnden2 6 8.75 0.00 0.00 0.00
mnen3 4 3.77 38.05 27.71 10.34
mnen3 6 8.75 0.00 0.00 0.00
mnh2o6 4 3.76 47.12 43.44 3.67
mnh2o6 6 8.75 0.00 0.00 0.00
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A review of the basic physics of the origin of the splitting
provides a useful starting point for understanding how the
DFT error is likely to depend upon the chemical nature of
the transition metal complex. The t2g orbitals have minimal
interaction with the ligand lone pairs that are pointed at the
metal, and are to a first approximation viewed as nonbonding
orbitals. The eg orbitals in contrast can have a strong
interaction with the ligand orbitals. The importance of this
interaction depends primarily upon two factors: the energy
of the relevant ligand orbitals, and overlap of these orbitals
with the eg metal d-orbitals. Qualitatively, higher energies
of the ligand orbitals (bringing them closer in energy to the
metal d-orbitals) and greater overlap of ligand and metal
d-orbitals leads to a larger mixing of the ligand and eg

orbitals, and this in turn is reflected in an increase in the
energy of the eg orbitals which essentially take on the role
of low lying antibonding orbitals of the complex. The ligand
orbitals that interact with the eg orbitals in turn play the role
of bonding orbitals, and are pushed downward in energy by
greater mixing. When the t2gf eg splitting is large compared
to the pairing energy of two d-electrons, the t2g orbitals are
filled prior to any occupation of the eg orbitals, leading to a
low-spin complex in the ground state. In contrast, when the
splitting is small compared to the pairing energy, the eg

orbitals are singly occupied prior to double occupation of
any t2g orbitals, and a high-spin state becomes the ground
state.

DFT based errors in the ∆o splitting must be dominated
by errors in the matrix elements between the ligand and metal
d-orbitals that interact to form the new eg orbitals. The
metal-ligand “bonding” characterizing such interactions can
be viewed as having a large ionic character. There is a strong
dependence of these nondynamical correlation errors on DFT
functional, which explains why different functionals yield
very different prediction of relative transition metal spin state
energetics. For B3LYP, in an ionic complex such as NaCl,
the strength of the ionic bond (which in turn is proportional
to the Hamiltonian matrix element between the appropriate
Na+ and Cl- orbitals) is underestimated by 4.5 kcal/mol.52

Such an underestimation will in turn lead to an equivalent
underestimation of the splitting of the t2g and eg orbitals, and
this underestimation will stabilize high-spin, as opposed to
low-spin, states. This is the origin of the observation in the
literature concerning the apparent overstabilization of high-
spin complexes by B3LYP and other hybrid functionals.

We expect each ligand lone pair coordinated to the metal
to contribute a component to the error. The magnitude of
the contribution should be on the same energy scale as
the bond energy errors seen for organic systems, roughly
1-5 kcal/mol. Finally, the value of the error will depend
predominantly upon the ligand and, secondarily, upon the
metal and oxidation state, and we expect to see a
semiquantitative correlation with the spectrochemical
series. The most accurate model would be derived by
assigning a large number of parameters for different
ligands depending upon their chemical structure, however,
we lack sufficient data to do this in a fine grained fashion.
Hence, to avoid overfitting, we instead try to use the
smallest number of ligand parameters possible in the

analysis that follows. This leads to a “minimalist” model
which nevertheless displays remarkable predictive power.
Future versions of the model aimed at higher accuracy
will likely need to increase the number of ligand param-
eters as is briefly discussed below.

By grouping the complexes in Table 1 according to their
molecular orbital diagrams, as well as coordinating atoms
and metal oxidation states, it can be seen that the
experimental results cluster accordingly and are consistent
considering the spectrochemical series and spin-spin
stabilization energies. Again it is seen that a balance in
the electronic structure becomes important for example
consider the similarity in the spin-splitting energies for
complexes with differing electronic structures as in Co
complexes with t2g f eg versus Fe complexes with eg f
t2g, as well as balancing the effect of decreasing ∆o with
an oxidation state less than two with increasing ∆o with
strongly interacting ligands as in Fe(II)(CN)6

-4. In every
case the correct ordering of the states is obtained with
B3LYP and in many cases the conventional B3LYP was
already close to experiment.

Each Co(III)-N6 complex, coen3, col2, conh35soch32, and
conh36 involves an unpairing of a t2g orbital worth around
-10 kcal/mol. This is the same pairing error as determined
before for the t2g f t2g and eg f eg complexes but with
opposite sign. By comparing the -10 kcal/mol with the
average error in the spin-forbidden transition energy, which
is already reasonably small, around 2 kcal/mol, a ∆o

correction is determined to be around 2 kcal/mol per
coordinating nitrogen. As will be discussed below all values
will be optimized by linear regression for the final DBLOC
model. Proceeding similarly for the Co(III) nitrogen and
sulfur complexes, coamn3s3sarh, coamn5ssarh, coetn4s2amp,
and con3s3, there is an unpairing correction of -10 kcal/
mol along with the 2 kcal/mol per nitrogen for the t2g f eg

excitation. Comparison to the experimental gap provides a
larger ∆o correction of 5 kcal/mol per sulfur atom. Note that
with the exception of the small outlier coamn5ssarh the error
increases as the number of coordinating thio-ether sulfurs
increases.

For higher multiplicity calculations the singly occupied-
singly occupied (t2g or eg) interaction becomes important and
depending on the oxidation state and ligands very small ∆o

can induce some interaction between t2g and eg electrons.
Considering fethiocarbamate3 there are corrections of 10
kcal/mol for pairing and a total of -12 kcal/mol for de-
exciting in a field of six anionic sulfurs. The later comes
from the fact that anionic sulfurs lie to the left of the
spectrochemical series and thus receive a 2 kcal/mol cor-
rection per atom. Comparing the sum with the error in the
spin-forbidden transition of 5 kcal/mol gives an estimate for
creating a singly occupied-singly occupied interaction at
around -1 kcal/mol. The fethiocarbamate3 despite being a
+3 oxidation state complex loses 7 such interactions because
anionic sulfurs are so far left in the spectrochemical series
thereby inducing spin-spin stabilization between the t2g and
eg manifolds. The Fe(III)-O6 complexes having a small
average error can be analyzed using the same types of
corrections as for fethiocarbamate3, except that in this case,
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we only lose 3 spin-spin interactions and the de-excitation
is in a field of six oxygens. This includes both neutral oxygen,
as in the aquo ligand, and anionic oxygen, as in the hydroxyl
ligand. These ligands are again to the left of the spectro-
chemical series and so the same parameters are used giving
reasonable results. For the Mn(II)-N6 and Mn(II)-O6
complexes, there are pairing and de-excitation parameters
along with the loss of 7 spin-spin interactions because of
the +2 oxidation state. Co(II)-F6 has a total correction of
around 11 kcal/mol which is composed only of the pairing
correction and the loss of 3 spin-spin corrections. This is
because the oxidation state is +2 and the fluoride ion lies
far to the left of the spectrochemical series. This complex
has roughly 5-fold degenerate d-orbitals and is more
comparable to the t2g f t2g or eg f eg class of complexes.
Since the cyano ligand is to the far right of the spectro-
chemical series it is more comparable to the 5 kcal/mol
correction for the thio-ether sulfur containing ligands, and
so Fe(II)-C6, along with the pairing correction, results in a
total correction of 20 kcal/mol. Analyzing the Fe(III)-C6
complex proceeds similarly except for the formation of a
spin-spin interaction.

3.6. DBLOC Model. A simplified correction scheme can
now be devised for calculating accurate relative spin state
energetics of transition metal complexes. An acceptable ratio
of parameters to data points has been achieved. The final
set of five DBLOC parameters optimized by linear regression
are shown in Table 7 and the errors with respect to
experiment of the corrected spin-forbidden transition energies
are shown in Table 8. The parameter exmss will be discussed
in the section below on small-gap spin-crossover complexes
but is included now for completeness. The DBLOC energy,
EDBLOC, is given by adding the DBLOC correction, EDBLOC

corr ,
to the B3LYP energy, EB3LYP,

where
with 0nR

t2g, knR
t2g, 0nR

eg, and knR
eg being the number of unpaired

t2g or eg electrons for the ground, 0th, and excited states,

Table 7. Final Five DBLOC Correction Parameters for
Spin-Forbidden Transitions Optimized by Linear
Regressiona

symbol description value (kcal/mol)

p create a doubly occupied orbital 10.05/pair
ss create a singly occupied-singly

occupied interaction
-1.05/interaction

exlss t2g f eg excitation
(left spectrochemical series)

1.88/atom

exmss t2g f eg excitation
(middle spectrochemical series)

2.85/atom

exrss t2g f eg excitation
(right spectrochemical series)

5.21/atom

a The values shown are for the pairing of electrons, the creation
of a spin-spin interaction, or for t2g f eg excitation for the excited
state relative to the ground state. Note that the last three
parameters are corrections for ∆o.

EDBLOC ) EB3LYP + EDBLOC
corr (3)

Table 8. Errors (kcal/mol) with Respect to Experiment for the
DBLOC Corrected Spin-Forbidden Transition Energies, along
with the Weights of the Parameters Shown in Table 7a

complex p ss exlss exmss exrss exp.
B3LYP
error

DBLOC
error

cr223tetcl2 1 -3 0 0 0 36.53 11.36 -1.82
cracac2im2py 1 -3 0 0 0 35.53 11.56 -1.63
crccsime36 1 -3 0 0 0 33.52 10.57 -2.61
crcn6 1 -3 0 0 0 31.00 7.46 -5.73
crcyclamncs2 1 -3 0 0 0 34.54 9.76 -3.43
cren3 1 -3 0 0 0 38.67 11.63 -1.56
crf6 1 -3 0 0 0 40.37 14.48 1.30
crf6 1 -1 0 0 0 28.09 14.96 3.87
crnh34cl2 1 -3 0 0 0 36.95 10.87 -2.31
crnh36 1 -3 0 0 0 39.15 12.36 -0.82
crox3 1 -3 0 0 0 36.53 11.95 -1.24
mn2p2pameth2 1 -1 0 0 0 46.55 6.62 -4.47
mncn6 1 -1 0 0 0 24.10 11.56 0.47
mnf6 1 -3 0 0 0 41.24 14.50 1.31
vf6 1 -1 0 0 0 24.66 12.13 1.04
vurea6 1 -1 0 0 0 23.99 10.68 -0.41
ni12dimeim6 1 -1 0 0 0 29.09 10.82 -0.27
ni1meim6 1 -1 0 0 0 28.43 11.48 0.39
ni2meim6 1 -1 0 0 0 28.47 10.37 -0.72
niacac2im2py 1 -1 0 0 0 28.00 9.86 -1.23
nibipy3 1 -1 0 0 0 25.11 12.04 0.95
nibpm2no3 1 -1 0 0 0 27.64 11.88 0.79
nidmso6 1 -1 0 0 0 30.94 13.48 2.39
nidpdpm2h2o2 1 -1 0 0 0 28.95 11.29 0.20
nidpdpm2no3h2o 1 -1 0 0 0 28.95 11.74 0.64
nidpdpmno32 1 -1 0 0 0 28.95 14.94 3.84
nidpdpmno32ch3cn 1 -1 0 0 0 28.95 11.73 0.64
niedta 1 -1 0 0 0 27.00 10.16 -0.93
nien2scn2 1 -1 0 0 0 27.03 11.92 0.83
nien3 1 -1 0 0 0 26.08 17.99 6.89
nif6 1 -1 0 0 0 33.72 14.31 3.21
nigly3 1 -1 0 0 0 28.29 10.87 -0.22
nih2o6 1 -1 0 0 0 33.03 14.04 2.95
ninh36 1 -1 0 0 0 28.23 10.87 -0.22
niphen3 1 -1 0 0 0 25.16 17.32 6.23
nipyrazole6 1 -1 0 0 0 28.86 11.34 0.25
nitach3mepyr 1 -1 0 0 0 23.14 6.51 -4.59
nitpm2 1 -1 0 0 0 27.78 10.24 -0.85
nitpmno32 1 -1 0 0 0 27.58 9.71 -1.38
coamn3s3sarh -1 0 3 0 3 33.61 11.62 0.42
coamn5ssarh -1 0 5 0 1 32.48 8.38 3.85
coen3 -1 0 6 0 0 32.33 3.01 1.81
coetn4s2amp -1 0 4 0 2 32.62 7.35 -0.52
cof6 1 -3 0 0 0 43.20 11.44 -1.75
col2 -1 0 6 0 0 23.74 1.77 0.56
con3s3 -1 0 3 0 3 34.72 12.36 1.16
conh35soch32 -1 0 6 0 0 26.22 2.80 1.59
conh36 -1 0 6 0 0 30.33 0.55 -0.66
fecat3 1 -3 -6 0 0 22.61 0.02 -1.91
fecn6 -1 0 0 0 6 60.93 23.52 2.33
fecn6 -1 1 0 0 6 45.14 16.57 -3.58
feen3 -1 1 6 0 0 18.89 -2.02 -2.18
feeta3 1 -3 -6 0 0 25.19 3.32 1.38
feh2o6 1 -3 -6 0 0 29.19 5.35 3.42
fethiocarbamate3 1 -7 -6 0 0 11.75 5.18 -0.94
fetrencam 1 -3 -6 0 0 22.90 -1.31 -3.24
mnden2 1 -7 -6 0 0 39.05 10.42 4.30
mnen3 1 -7 -6 0 0 38.05 10.34 4.22
mnh2o6 1 -7 -6 0 0 47.12 3.67 -2.45

a The t2g f t2g, eg f eg, and t2g f eg or eg f t2g are at the top,
middle, and bottom, respectively.

EDBLOC
corr ) 1

2
(0nR

t2g - knR
t2g + 0nR

eg - knR
eg)p +

λ(knR
t2gknR

eg - 0nR
t2g0nR

eg)ss + 1
2

(knR
t2g(knR

t2g - 1) + knR
eg(knR

eg - 1) -

0nR
t2g(0nR

t2g - 1) - 0nR
eg(0nR

eg - 1))ss + (0nt2g - knt2g) ×

∑
i)1

6

(exlssδLi0
+ exmssδLi1

+ exrssδLi2
) (4)

λ ≈ H(2 - q)H(3 - (L1 + L2 + L3 + L4 + L5 + L6))
(5)

28 J. Chem. Theory Comput., Vol. 7, No. 1, 2011 Hughes and Friesner



kth, respectively. The total number of t2g electrons for the
ground and excited states are given by 0nt2g and knt2g. The
parameter λ turns on spin-spin interactions between the t2g

and eg manifolds for the case of small ∆o, that is, where the
Heaviside functions, H(2 - q) or H(3 -(L1 + L2 + L3 + L4

+ L5 + L6)), become positive in cases where the metal has
oxidation state less than or equal to 2 or when the sum of
ligand integers (discussed below) is less than or equal to
around 3. The sum is over the first coordination sphere of
an octahedral complex where the value of Li indicates wether
the coordinating atom lies to the left (Li ) 0), middle (Li )
1), or right (Li ) 2) of the spectrochemical series and the
Kronecker delta selects the appropriate term. Parameters p,
ss, exlss, exmss, and exrss are the DBLOC model parameters.
Sign conventions for the parameters are as shown for either
creating an electron pair (p), creating a spin-spin interaction
(ss), or for moving an electron from t2g f eg (exlss, exmss,
and exrss, depending upon the ligand atoms coordinated to
the metal) as the complex transitions from the ground to the
excited state. Note that the parameter ss is applied per
interaction, while the parameters exlss, exmss, and exrss are
applied per coordinating atom. Opposite signed parameters
must be used if the ground to excited state transition involves
the opposite of the listed physical process. This reversibility
of the parameters with reversibility of the physical interpreta-
tion provides support for the robustness of the underlying
model. For example, the pairing parameter at 10.05 kcal/
mol changes sign if unpairing electrons. The magnitude of
this value signifies the importance of errors in B3LYP’s
description of nondynamical correlation of occupied d-
orbitals in metal complexes. The t2g f eg excitation
parameters, exrss, exmss, and exlss, are different because
the error in the B3LYP depends on the position of the
coordinating atoms in the spectrochemical series. For this
database the error increases from 1.88 to 2.85 and finally to
5.21 kcal/mol as we move to the right of the spectrochemical
series corresponding to a larger ∆o and thus more strongly
interacting ligands. As noted above, the signs and magnitudes
of these corrections, when interpreted in a simple ligand field
picture, are in remarkably good correspondence with the
analogous range of correction parameters analyzed for metal
atoms15 and organic molecules.52

In general, B3LYP largely underestimates the energy
required to pair two t2g or eg electrons, overestimates the
energy to unpair them, slightly overestimates the energy of
a parallel spin-spin interaction, and underestimates the size
of ∆o, more severely for strongly interacting ligands. Table
8 shows that the MUE for conventional B3LYP goes from
11.40 kcal/mol (standard deviation of 2.25 kcal/mol) to 2.13
kcal/mol (standard deviation of 1.53 kcal/mol) for t2gf t2g,
from 11.95 kcal/mol (standard deviation of 2.51 kcal/mol)
to 1.77 kcal/mol (standard deviation of 1.96 kcal/mol) for
egf eg, and from 7.05 kcal/mol (standard deviation of 6.06
kcal/mol) to 2.11 kcal/mol (standard deviation of 1.27 kcal/
mol) for t2g f eg or eg f t2g. This is an overall decrease
from 10.14 kcal/mol (standard deviation of 4.56 kcal/mol
and maximum of 23.52 kcal/mol) to 1.98 kcal/mol (standard
deviation of 1.62 kcal/mol and maximum of 6.89 kcal/mol).
This maximum error is for nien3 which is one of the

complexes for which B3LYP/LACV3P has some difficulties
in breaking the octahedral symmetry. To summarize, the
DBLOC model performs extremely well energetically and
removes many outliers. Complexes crcn6, mn2p2pameth2,
nitach3mepyr, and feh2o6 show only minor improvement
while the error for some complexes increases only slightly.

Application of the DBLOC model to 7 metal complexes
studied by Swart et al.66 (see Supporting Information Tables
11-13) shows systematic results for similar chemical species
and illustrates that although it is possible for the model to
reorder the spin states, the correct ordering of the states given
by conventional DFT is preserved by DBLOC. The spin
multiplicities of the ground states of these complexes are
known, however, the experimental gaps remain unknown.

3.7. Comparison to B3LYP*. Comparison of errors for
conventional B3LYP, B3LYP* (5% less exact nonlocal
exchange than B3LYP), and DBLOC single point LACV3P
calculations with experiment for some selected complexes
are shown in Table 9. The complexes are crnh36, which is
t2gf t2g, nigly3, which is egf eg, cof6 and fetrencam, which
are egf t2g, and fecn6, which is t2gf eg, and experimentally
all are high-spin ground states with the exception of fecn6.
The results shown for B3LYP and DBLOC and their
comparison with experiment are the same as the results
previously discussed. As expected, comparing the B3LYP*
and B3LYP total energies (not shown) shows that reducing
the amount of exact nonlocal exchange makes the energies
less negative. The important differences, shown in the relative
energies, are that the high-spin states undergo a larger change
than the low-spin states resulting in smaller spin gaps for
complexes with high-spin ground states and larger spin gaps
for complexes with low-spin ground states. For these
experimental spin-forbidden transitions reducing the amount
of exact nonlocal exchange brings the final B3LYP* result
further from experiment by about 5 kcal/mol on average in
every case except fecn6 for which the results are closer to
experiment by about 4 kcal/mol. Similar problems would
be manifested in many other complexes in our database. In

Table 9. Comparison of Errors for Conventional B3LYP
(20% Exact Non-Local Exchange), B3LYP* (15% Exact
Non-Local Exchange), and DBLOC with Experimental
Spin-Forbidden Transition Energies (kcal/mol) for Selected
Complexes, crnh36 (t2g f t2g), nigly3 (eg f eg), cof6 and
fetrencam (eg f t2g), and fecn6 (t2g f eg)a

complex mult. exp.
B3LYP
error

B3LYP*
error

error
diff.

DBLOC
error

crnh36 2 39.15 12.36 15.06 2.70 -0.83
crnh36 4 0.00 0.00 0.00 0.00 0.00
nigly3 1 28.29 10.85 16.15 5.31 -0.24
nigly3 3 0.00 0.00 0.00 0.00 0.00
cof6 2 43.20 11.45 19.75 8.30 -1.74
cof6 4 0.00 0.00 0.00 0.00 0.00
fecn6 2 0.00 0.00 0.00 0.00 0.00
fecn6 4 45.14 16.59 12.82 -3.77 -3.56
fetrencam 4 22.90 -1.32 0.52 1.84 -3.25
fetrencam 6 0.00 0.00 0.00 0.00 0.00

a For all complexes but fecn6, the ground state is high-spin.
B3LYP’s stabilization of the high-spin states relative to B3LYP*
results in better agreement with experiment in all cases except
fecn6. The DBLOC model shows considerable improvement over
both B3LYP and B3LYP*. The column error diff is the
difference between B3LYP* and B3LYP errors.
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contrast, DBLOC provides systematically appropriate cor-
rections, in sign and magnitude, across the entire suite of
test cases. The reason for the failure of B3LYP* for these
test cases is straightforward. When applied to the “standard”
set of spin-crossover complexes, the B3LYP errors are
generally in the 5-10 kcal/mol range and the high-spin state
is overstabilized due to reduction of ∆o as discussed
previously. The presence of a eg f t2g transition between
the ground and relevant excited spin states, and the numerical
value of the error in the energy gap, are a consequence of
the metals in these compounds being primarily Fe or Co and
the ligands virtually all being aromatic nitrogens, as noted
above. These are the cases for which B3LYP* was optimized,
and subsequent “tests” of the method employed cases that
differ very little in the aforementioned key respects. The test
cases we have presented, in which B3LYP* performs poorly,
in contrast involve different metals and ligands, and in many
cases involve movement of the electron exclusively in the
t2g or eg manifold. The overfitting of B3LYP* to a narrowly
defined training set then becomes apparent, and its unsuit-
ability for general use manifest.

3.8. Applications to Small-Gap Spin-Crossover Com-
plexes. Molecular orbital diagrams of a number of small-
gap spin-crossover octahedral complexes from the literature
are shown in Table 10 (see Supporting Information Table
14 for models of complexes). The first 9 complexes are from
ref 47, the fephen2ncs2 complex is from ref 48. and the last

4 complexes are from ref 67. Some of the complexes from
the last reference have not been included here because the
DFT results reported show heavy dependence on both
functional and basis set and there are not enough calculation
details provided to resolve this. Most of the complexes are
low-spin singlet ground state Fe(II)-N6 (and most of the N
atoms are aromatic) involving a spin-crossover to the high-
spin quintet, where there are 4 more unpaired electrons. All
of these complexes have either one or two t2g f eg

nonradiative transitions.
Table 11 shows B3LYP and experimental spin-crossover

energetics for the small-gap complexes. The B3LYP results
reported here are simply those values reported in the literature
and vibrational relaxation effects do not need to be taken
into account given the experimental protocols used in these
cases. Details of the B3LYP calculations and the experi-
mental results are described in the literature.47,48,67 In every
case conventional B3LYP incorrectly reverses the ordering
of the spin states with respect to experiment, predicting the
high-spin state to be the ground state by as much as 8 kcal/
mol. This is in agreement with the observation that B3LYP
tends to overbind high-spin states and hence these are the
ground states for complexes with near zero gaps. Experi-
mental gaps are all within about 5 kcal/mol. On average the
conventional B3LYP spin-crossover energies have errors

Table 10. Molecular Orbital Diagrams for the Octahedral Small-Gap Spin-Crossover Complexes Studied in Refs 47, 48, and
67

Table 11. Application of DBLOC to Spin-Crossover Complexes with Near-Zero Spin Gapa

complex p ss exlss exmss exrss exp. B3LYP B3LYP error DBLOC DBLOC error

feacac2trien -2 4 8 4 0 2.87 -3.11 5.98 -0.97 3.84
fepapth2 -2 2 0 12 0 3.82 -8.13 11.95 3.87 -0.05
fetacn2 -2 2 12 0 0 5.50 -5.02 10.52 -4.66 10.16
fe2amp3 -2 2 6 6 0 5.26 -7.17 12.43 -0.99 6.25
fehbpz32 -2 2 0 12 0 4.54 -0.72 5.26 11.28 -6.74
fepybzimh3 -2 2 0 12 0 5.02 -6.93 11.95 5.07 -0.05
fetppn3 -2 2 4 8 0 6.69 -5.26 11.95 2.86 3.83
coterpy2 -1 1 0 6 0 3.11 -4.78 7.89 1.22 1.89
copyimine22 -1 1 0 6 0 3.35 -6.21 9.56 -0.21 3.56
fephen2ncs2 -2 2 4 8 0 0.00 -7.98 7.98 0.14 -0.14
fetpen -2 2 4 8 0 0.00 -2.29 2.29 5.83 -5.83
fetpancs2 -2 2 6 6 0 0.00 -3.99 3.99 2.19 -2.19
febptnncs2 -2 2 8 4 0 0.00 -8.22 8.22 -3.98 3.98
fephen2ncse2 -2 2 4 8 0 0.00 -7.43 7.43 0.69 -0.69

a B3LYP and experimental results are taken from the literature. The first nine complexes are from ref 47, while the last four are from ref
67. Results for fephen2ncs2 are taken from ref 48. The majority of the complexes are ground state singlet Fe(II)-N6 (most with aromatic
nitrogens) crossing over to a high-spin quintet thereby changing the number of unpaired electrons by four.
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with respect to experiment of 8.39 kcal/mol with a standard
deviation of 3.21 kcal/mol and a maximum error of 12.43
kcal/mol.

Using the literature B3LYP and experimental results
shown in Table 11 for the spin-crossover energy shows the
DBLOC models necessity of the exmss parameter of 2.85
kcal/mol for aromatic nitrogen in correcting the small-gap
spin-crossover data. DBLOC corrects the B3LYP ordering
of the spin states in all but 2 important cases (fetacn2 and
febptnncs2). The MUE for DBLOC is 3.51 kcal/mol with a
standard deviation of 2.98 kcal/mol and a maximum of 10.16
kcal/mol. This MUE and maximum error might be substan-
tially decreased if we were to recompute the B3LYP DFT
results using our standard basis sets and convergence
protocol, an analysis we plan to carry out in the near future.
As it is, the reduction of MUE from 8.39 to 3.51 kcal/mol,
with no further adjustment of parameters and no recomputa-
tion of DFT with a single consistent basis set, represents a
very substantial improvement.

4. Conclusion
A simplified five-parameter empirical correction scheme
based on ligand field theory is proposed to give more accurate
energies for B3LYP calculations on relative spin state
energetics of transition metal complexes. By isolating errors
in radiative spin-forbidden transition energies over a diverse
database of octahedral transition metal complexes some
general rules about the behavior of B3LYP in comparison
to experiment can be made. Errors in the treatment of
nondynamical correlation of occupied d-orbitals results in
B3LYP’s large underestimation, 10.05 kcal/mol, of the
energy required to pair two t2g or eg electrons. Additionally,
errors in ∆o were found to be proportional to the strength of
the metal-ligand interaction, that is, smaller, 1.88 kcal/mol,
intermediate, 2.85 kcal/mol, and larger, 5.21 kcal/mol,
corrections to the left, middle, and right of the spectrochemi-
cal series. B3LYP also slightly overestimates parallel
spin-spin interactions in metal complexes. The DBLOC
model brings the average error in the spin-splitting from
10.14 to 1.98 kcal/mol. Comparison of B3LYP, B3LYP*,
and DBLOC clearly shows the advantages of using DBLOC
over B3LYP and B3LYP* (15% exact nonlocal exchange)
for which the spin-forbidden transition errors are often worse
than B3LYP by about 5 kcal/mol. Applying DBLOC to the
seven complexes from Swart et al.66 shows that it is in
agreement with experiment. Applying DBLOC to spin-
crossover compounds with near zero gaps reduces the MUE
of conventional B3LYP from 8.39 to 3.51 kcal/mol.
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Abstract: The performance of several families of basis sets for correlated wave function calculations
on molecules is studied. The widely used correlation-consistent basis set family cc-pVXZ (n ) D, T, Q,
5) is compared to a systematic series of atomic natural orbital basis sets (ano-pVXZ). These basis sets
are built from the cc-pV6Z primitives in atomic multireference average coupled pair functional (MR-ACPF)
calculations. Segmented basis sets optimized for self-consistent field calculations (def2-SVP, def2-TZVPP,
and def2-QZVPP as well as “pc-n”, n) 1, 2, 3) were also tested. Reference Hartree-Fock energies are
determined with the uncontracted aug-cc-pV6Z basis set for a set of 21 small molecules built from H, B,
C, N, O, and F. Reference coupled cluster CCSD(T) correlation energies were determined from
extrapolation at the cc-pV5Z/cc-pV6Z level. It is found that the ano-pVXZ basis sets outperform the other
basis sets. The error in the SCF energies compared to cc-pVXZ basis sets is reduced by about a factor
of 3 at each cardinal number. In addition, the ano-pVXZ consistently recovers more correlation energy
than their competitors at each cardinal number. The ability of the four families of basis sets to extrapolate
SCF and correlation energies to the basis set limit has been investigated. A conclusion by Truhlar is
confirmed that the optimum exponent for correlation energy extrapolations at the DZ/TZ level is ∼2.4. All
TZ/QZ basis set pairs lead to an optimum exponent close to the expected value of 3. The SCF energy
extrapolation proposed by Petersson and co-workers is found to be effective. At the DZ/TZ level, errors
in total energies of less than 2 mEh are found for the test set, while at the TZ/QZ level one obtains the
total energies within ∼0.3 mEh of the basis set limit. For extrapolation, the “cc” and “ano” bases are
found to be similarly successful. Extrapolation results were compared to explicitly correlated calculations
with dedicated basis sets (cc-pVXZ-F12) as well as the ano-pVXZ bases. It is found that the ano-pVXZ+
basis sets perform as well as the cc-pVXZ-F12 family (both are of comparable size); additional
improvement should be possible by reoptimizing the ANO basis sets for explicitly correlated calculations.
The error of the extrapolated energies is about 2-3 times smaller than what was found in the explicitly
correlated calculations. However, the error in the explicitly correlated calculations is more systematic,
and hence the same conclusion may not hold for the computation of energy differences.

1. Introduction

It is well-known that the one-particle basis set is an important
ingredient of wave-function-based ab initio calculations on
molecules. While the convergence of the Hartree-Fock

energy to the basis set limit is relatively rapid as the one-
particle basis set is approaching completeness, the conver-
gence of the correlation energy is known to be slow.1 In
order to obtain accurate results for energetic quantities, very
large basis sets of at least polarized quadruple-� quality or
even larger are required. Such basis sets quickly become* Corresponding author e-mail: neese@thch.uni-bonn.de.
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unmanageably large even for relatively small molecules (say,
beyond five non-hydrogen atoms).

In recent years, two techniques have emerged that aim at
obtaining accurate results for correlated ab initio energies
with smaller basis sets. The first family of methods corrects
the origin of the slow basis set convergence of the correlation
energysthe lack of derivative discontinuity (cusp) in standard
wave functions when electrons meet each other. The explic-
itly correlated methods accomplish this by introducing the
interelectronic distances rij explicitly into the wave function
ansatz; this can be viewed alternatively as an inclusion of
rij-dependent many-electron basis functions. The most practi-
cal of these methods were pioneered by Kutzelnigg;2 the R12
methods developed by him and many others allow for
approaching the basis set limit with much smaller basis sets.
Great progress has been made in recent years in the
formulation and implementation of explicitly correlated wave
function methods. An authoritative review of these ap-
proaches is provided in a recent article by Helgaker et al.3

The second family of methods relies on extrapolation of
the correlation energy based on a series of calculations with
successively refined basis sets.4,5 There are two key require-
ments for this approach: (a) the existence of a systematically
converging series of basis sets and (b) a suitable formula
for correlation energy extrapolation.

Dunning and co-workers made a major contribution by
developing a series of successively larger one-particle basis
sets, cc-pVXZ with n ) 2 () D), 3 () T), 4 () Q), 5, 6,
etc. being the “cardinal number”; cc stands for “correlation
consistent” and p for “polarized”.6-15 Using these basis sets,
the calculated correlation energies (within a given correlation
method) converge smoothly and systematically to the basis
set limit. The cc-basis sets are built upon a core of
Hartree-Fock orbitals and are systematically supplemented
with additional primitive Gaussian functions that describe
polarization and valence shell correlation. For n ) 2, 3, 4,
etc., the polarization sets for main group elements consist
of 1d, 2d1f, 3d2f1g, etc. functions. For the hydrogen and
helium atoms, the equivalent sets consist of 1p, 2p1d, 3p2d1f,
etc. functions. Further modifications include additional
diffuse functions for weak interactions and calculations on
anions (aug-cc-pVXZ)10 and functions that describe core-
correlation (cc-pCVXZ9,16) or core-valence correlation
(cc-pwCVXZ6,9). Recently, Peterson and co-workers have
developed correlation consistent basis sets for first through
third row transition metals.17-20 Recontractions of the basis
sets to comply with scalar relativistic Douglas-Kroll-Hess
(DKH) calculations are also available.

A second way to construct systematic series of one-particle
basis sets was pioneered by Almlöf and Taylor and is based
on atomic natural orbitals (ANOs).18-22 ANO basis sets are
generally contracted in the sense that all Gaussian primitives
of a given angular momentum contribute to all basis
functions. ANOs are among the best possible choices for
atomic correlation calculations. It is, however, not a priori
clear whether ANOs are flexible enough to properly describe
low symmetry molecular environments and the changes of
the atomic orbitals upon bond formation and charge transfer.
Many excellent results have, however, been obtained with

the use of ANOs, and they are the main workhorse of the
MOLCAS quantum chemistry program.21-23 The general
contraction scheme on ANOs poses new challenges on the
integral evaluation program: the two-electron integral evalu-
ation time naively depends on the fourth power of the
contraction depth, although the scaling is reduced to quadratic
by using the robust density fitting (aka resolution of the
identity, RI) approach.24 Only a few modern quantum
chemistry programs can efficiently handle generally con-
tracted basis sets.

In SCF calculations, the computing time is strongly
dominated by the integral evaluation time, and hence one
seeks to develop basis sets with the smallest possible number
of primitives. This has been the route followed by Ahlrichs
and co-workers in the development of the def- series of basis
sets that is available in double-� (def2-SVP), triple-� (def2-
TZVPP), and quadruple-� (def2-QZVPP) variants.28-32 For
these basis sets, exponents and contraction coefficients are
optimized in atomic calculations. The def2 bases usually
show excellent performance in Hartree-Fock and DFT
studies. The behavior of these basis sets in MP2 calculations
has been studied by their developers,25,26 but the behavior
in highly correlated calculations has probably not been fully
assessed to date.

A similar target has been followed with the development
of the pc-n (n ) 0, 1, 2, 3, 4) basis sets by Jensen and
co-workers.27-33 The basis sets of double- through quintu-
ple-� quality were designed to systematically converge to
the SCF basis set limit. These basis sets are partially
optimized in molecular calculations.

The motivation for the present study was the efficient
application of accurate correlation methods for large mol-
ecules. Since the overall cost is dominated by the calculation
of the correlation energy for which the integral evaluation
time is less of an issue, the most important aspect is the
number of basis functions with which a given accuracy can
be obtained. Clearly, the error relative to the basis set limit
contains contributions from the SCF error and the correlation
energy error. Hence, one desires basis sets that, for a given
size, perform well in both respects. In this context, we
became somewhat unsatisfied with the correlation-consistent
basis sets that provide excellent correlation energies but also
show errors in the Hartree-Fock energies that are signifi-
cantly larger than what is obtained with other basis sets of
the same size. We were curious of whether one could
improve on this behavior while maintaining good correlation
energies. This is also relevant in the context of explicitly
correlated calculations where one aims at accurate correlation
energies with small basis sets. The present work represents
an attempt to systematically evaluate the performance of
series of basis sets for which at least double-, triple-, and
quadruple-� variants are available. Particularly important are
the double- and triple-� members within each series since
calculations with larger basis sets are hardly feasible in “real
life” chemical applications. Since errors can be largely
reduced through extrapolation and R12 techniques, we have
also evaluated the performance of the various basis sets with
respect to SCF and correlation energy extrapolations using
these two approaches.
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2. Basis Set Construction

A series of ANO basis sets was constructed in the course of
this study. It is obvious that no basis set can be more accurate
than the underlying set of primitives. Hence, we have used
the primitives of the cc-pV6Z basis set34 as a starting point.
In order to keep the calculations manageable, a two-step
procedure was pursued.

The ANO basis sets were obtained from calculations on
the neutral atoms. To this end, the cc-pV6Z basis set was
fully decontracted. Atomic CASSCF calculations were
carried out for the atomic ground terms. The atomic
calculations were tightly converged on the atomic ground
terms while carefully averaging over the spatially degenerate
member of the terms. For example, for the 3P state of the
carbon atom, all three triplet roots corresponding to the three
components of the P-state were determined. Multireference
averaged coupled pair functional (MR-ACPF15) calculations
were performed on top of the CASSCF ground states. The
MR-ACPF method has the advantage over MR configuration
interaction (MR-CI) of being (nearly) size consistent and
leading to a stationary solution with a well-defined density.35

For the MR-ACPF calculations, all configurations in the CAS
space were kept as references, even those of the “wrong”
symmetry and insufficient number of open-shell orbitals. The
first-order interacting space is left uncontracted, and no
selection or any other approximation was made. The densities
of all three components of the P states were averaged in order
to obtain a spherically symmetric density that was subse-
quently diagonalized in order to obtain atomic natural
orbitals. All valence electrons were correlated. Thus, the
cores of our ANO basis sets are orbitals optimized at the
CASSCF level.

Three families of basis sets were constructed in order to
investigate the transition from cc-basis sets to ANO basis
sets:

(1) acc-pVXZ: The original polarization functions of the
cc-pVXZ basis were kept, and only the s and p functions
were replaced by their ANO counterparts. The number of
primitives is 16 for the s functions and 12 for the p functions
(B-Ne).

(2) rcc-pVXZ: the same s and p contractions as in cc-
pVXZ were used, but the polarization functions were
replaced by ANO contractions. The same numbers of
contracted polarization functions were kept as in the cc-
pVXZ family, e.g., 1d for n ) 2, 2d1f for n ) 3, and 3d2f1g
for n ) 4. The number of primitives is five for the d
contractions, four for the f contractions, and three for the g
contractions.

(3) ano-pVXZ: All orbitals were left at their complete
ANO contractions as described above. For hydrogen, the
appropriate number of ANOs is taken from the original
NASA-AMES ANO set.35,36

The hydrogen basis for the ano-pVXZ and acc-pVXZ basis
sets was taken from the original NASA-AMES-ANO basis,37

while in keeping with the philosophy of the basis set
construction, the s and p part for the rcc bases came from
the original cc-bases and the polarization functions from the
NASA-AMES set.

Thus, by construction the four families of basis sets cc-
pVXZ, acc-pVXZ, rcc-pVXZ, and ano-pVXZ all have the
same number of basis functions for a given n but differ in
their contraction depth.

For comparison, the segmented basis sets def2-SVP, def2-
TZVPP, and def2-QZVPP developed by Ahlrichs and co-
workers as well as the polarization consistent basis sets of
Jensen (pc-n, n ) 1, 2, 3) were included in the study.
Furthermore, alternative ANO sets due to Roos and
co-workers23,36 as well as the original, pioneering quadru-
ple-� type ANO basis by Almlöf and Taylor24 were included
in the study. The number of basis functions is comparable
or even identical to the other basis sets included in the study,
and hence a comparison is appropriate.

3. Calculations

Twenty-seven basis sets have been evaluated by performing
molecular calculations. In order to judge the performance
of the basis sets, the Hartree-Fock energy as well as the
correlation energy at the CCSD(T) level will be employed.
The SCF energies calculated with the very large uncontracted
aug-cc-pV6Z basis set serve as a near HF limit reference.
We expect the deviation of the reference values from the
true Hartree-Fock limit to be below 0.1 mEh. Reference
values for the correlation energies were obtained by using
the standard two-point extrapolation scheme involving the
cc-pV5Z and cc-pV6Z basis sets, as will be detailed below.

As test systems, the hydrides H2, BH3, CH4, NH3, H2O,
and FH were chosen together with all possible diatomics built
from B, C, N, O, and F. Open-shell species were treated in
the spin-unrestricted formalism. A reviewer pointed out that
we have inadvertedly used an excited state of BN. For the
purposes of this paper, this choice is immaterial. The
geometries were taken from geometry optimizations at the
B3LYP/def2-TZVP level. Geometric parameters are given
in the Computational Details section.

4. Comparison of Basis Sets

The reference values used in the present study are collected
in Table 1. The results of the test calculations are summarized
in terms of statistical measures in Table 2. Individual results
for all molecules and basis sets are given in the Supporting
Information.

4.1. SCF Energies. The performance of the various
double-� basis sets varies fairly dramatically. The largest
absolute errors are obtained with the def2-SVP basis set that
has been designed with the smallest possible number of
primitive Gaussians in mind. Hence, calculations with def2-
SVP are very efficient, and many successful molecular
studies have been performed with this basis set. Nevertheless,
it is the one with the largest deviations from the Hartree-Fock
limit in the present study. Perhaps surprisingly, the second
largest errors are obtained from the pc-2 basis set that has
also been designed for SCF (Hartree-Fock and DFT
calculations). Third in line is the cc-pVDZ basis set that
shows a mean unsigned deviation from the basis set limit of
about 40 mEh in the present test set.
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It is interesting how much better one can get with an ANO
basis set. In fact, the error with the ano-pVDZ basis is more
than a factor of 3 smaller than what is achieved with cc-
pVDZ and an order of magnitude smaller than the error
obtained with the def2-SVP basis. This accuracy is obtained
despite the fact that both basis sets contain the same number
of contracted basis functions. The comparison of the ano-
pVDZ, acc-pVDZ, rcc-pVDZ, and cc-pVDZ basis sets
reveals that the improvement in the SCF energy is mainly
due to the highly contracted ANO s and p parts of the basis
set and to a lesser extent to the contracted single polarization
function.

Already at the triple-� level with 2d1d and 2p1d polariza-
tion sets, a more uniform performance of the various basis
sets is obtained. The basis set that leads to the highest
energies is the cc-pVTZ one, closely followed by pc-2. The
performance of the def2-TZVPP basis set is excellent, and
it only gives a mean unsigned error of about 5 mEh.
However, once more, the improvement obtained with the
ano-pVTZ basis set is highly significant. The error is again
more than a factor of 3 smaller than that obtained with the
cc-pVTZ basis and only amounts to about 2.5 mEh on
average. This is almost as good as the result obtained with
the much larger cc-pVQZ basis.

For the quadruple-� bases, all basis sets provide results
within 2.5 mEh from the reference values. Once more, the
by far largest error is obtained with cc-pVQZ, followed by
acc-pVQZ, which has the same s and p functions. The best
results are obtained with def2-QZVPP, which comes within
0.6 mEh of the reference values. In this respect, it is
marginally better than the ano-pVQZ basis set that shows
an error that is 0.2 millihartree larger. However, def2-QZVPP
is also slightly larger in terms of basis functions than cc-
pVQZ or ano-pVQZ. The same is true for pc-3, which
contains an extra set of s and p functions for B-Ne but is
still slightly less accurate than ano-pVQZ.

It is instructive to observe that very significant improve-
ments in the results can be obtained by merely adding an
additional set of s and p functions to the basis set without

extending the polarization set. This leads to sano-pVDZ+
(s stands for small in this case). For the sano-pVDZ+ basis
set, the mean unsigned error in the SCF energy is only 7.0
mEh, which is almost half of the error obtained with ano-
pVDZ and already better than what is obtained with the much
larger cc-pVTZ or pc-2 bases. In fact, for the sano-pVTZ+
basis set where the four additional basis functions are even
less problematic, the mean unsigned error drops to 1.4 mEh,
which is about half of what one gets from the much larger
cc-pVQZ basis. Even for the sano-pVQZ+ basis, an im-
provement is obtained, and a mean unsigned error of only
0.5 mEh results. Since sano-pVQZ+ is about the same size
as def2-QZVPP, this shows that ANO basis sets are even
competitive in terms of accuracy with dedicated SCF
optimized bases, even though they have never been designed
for this purpose.

By adding the next d function to the polarization set and
an extra s function, one obtains ano-pVDZ+ (5s3p2d for
B-Ne), which improves the results further, and for ano-
pVTZ+, the average unsigned error even drops below 1
mEh. In terms of ANOs, one can also think about the ano-
pVXZ+ basis sets as being identical to the ano-pV(n+1)Z
basis set with the highest angular momentum polarization
function deleted and an extra s function added (the latter
does not add significantly to the computational cost and
mainly improves the SCF energies). Hence, these basis sets
are significantly larger than the ano-pVXZ bases.

In a comparison of our results to the those of the ANO bases
of Roos and co-workers and Almlöf and Taylor, we observe
that the results are fairly similar, with slight advantages for the
ano-pVXZ basis sets constructed in this work.

In summary, from the results collected in Table 2, one
concludes that ANO basis sets yield excellent SCF energies.
In fact, the results obtained with ano-pVXZ are almost as good
as what one obtains from cc-pV(n+1)Z and also as good or
even better that what one obtains with basis sets that are
specifically optimized for SCF calculations. This behavior was
not anticipated and is important in the context of explicitly
correlated calculations, as will be discussed below.

Table 1. Reference SCF and Correlation Energies for the Present Study

molecule SCF-reference EC(CCSD(T)) cc-pV5Z EC(CCSD(T)) cc-pV6Z E(CCSD(T)) cc-pV(5/6)Z Etot(CCSD(T))

H2 (1Σ) -1.133583 -0.04065 -0.04076 -0.04090 -1.17449
BH3 (1A) -26.402596 -0.14446 -0.14505 -0.14586 -26.54846
CH4 (1A) -40.216965 -0.23767 -0.23884 -0.24044 -40.45741
NH3 (1A) -56.224824 -0.27479 -0.27660 -0.27909 -56.50392
H2O (1A) -76.066958 -0.30233 -0.30499 -0.30866 -76.37561
HF (1A) -100.070300 -0.31511 -0.31874 -0.32372 -100.39402
B2 (3Σ) -49.086197 -0.17822 -0.17885 -0.17972 -49.26592
BC (4Σ) -62.337076 -0.19774 -0.19887 -0.19970 -62.53678
BN (3Σ) -79.021852 -0.27087 -0.27280 -0.27547 -79.29732
BO(2Σ) -99.566250 -0.34236 -0.34539 -0.34955 -99.91580
BF (1Σ) -124.168631 -0.38238 -0.38632 -0.39172 -124.56035
C2 (1Σ) -75.406555 -0.39968 -0.401452347 -0.40275 -75.80930
CN (2Σ) -92.234733 -0.35337 -0.35581 -0.35916 -92.59389
CO (1Σ) -112.791245 -0.40711 -0.41052 -0.41521 -113.20646
CF (2Π) -137.238721 -0.41972 -0.42407 -0.43004 -137.66876
N2 (1Σ) -108.994314 -0.42002 -0.42329 -0.42778 -109.42209
NO (2Π) -129.309819 -0.45716 -0.46120 -0.46675 -129.77657
NF (3Σ) -153.852696 -0.45705 -0.46194 -0.46867 -154.32136
O2 (3Σ) -149.691600 -0.49790 -0.50271 -0.50931 -150.20090
OF (2Π) -174.210823 -0.53157 -0.53748 -0.54560 -174.75642
F2 (1Σ) -198.775205 -0.60622 -0.61330 -0.62302 -199.39823
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4.2. Correlation Energies. The main purpose of this
study is to evaluate how the various basis sets perform in
correlation energy calculations. As is evident from Table 2,
the behavior of the basis sets is more uniform in this respect.
With the DZ bases, one recovers 70-80% of the correlation
energy; with TZ bases, about 90%; and with QZ bases, about
96-98%. However, there are still differences between the
various construction schemes.

Again, the most accurate among the DZ bases is ano-
pVDZ, which, on average, recovers about 4% or in absolute
terms 20 mEh more correlation energy than the basis sets
with uncontracted polarization functions. Here, the compari-

son with rcc-pVDZ and acc-pVDZ reveals that this is mainly
due to the contracted polarization function and to a lesser
extent to the more extensive s and p contractions. The
differences among the other DZ bases are quite small.

A similar but much less pronounced result is obtained at
the TZ level where ano-pVTZ is about 1-3% (or about 5
mEh on average) better than the other basis sets of the same
size.

Interestingly, the differences almost vanish at the QZ level
where there are only small differences between all QZ bases.
All results are within 0.5% or 1-2 mEh of each other, and
all deviate by 3-4% from the reference values.

Table 2. Errors (in mEh) in SCF and Correlation Energies Relative to the Uncontracted cc-pV6Z and Complete Basis
Extrapolated Reference Values Respectivelya

basis set MUE(SCF) MUE(EC) %∆EC RMS(SCF) RMS(EC) MAX(SCF) MAX(EC) MUE(Etot)

cc-pVDZ 39.9 98.1 26.1 45.7 110.8 88.2 213.3 138.0
cc-pVTZ 9.8 35.5 9.2 11.1 40.8 21.3 81.0 45.3
cc-pVQZ 2.2 14.6 3.7 2.5 17.0 5.0 34.4 16.7
pc-1 74.4 100.9 27.2 84.2 113.7 158.8 222.6 175.2
pc-2 8.3 43.7 11.4 9.1 50.1 15.4 100.3 52.0
pc-3b 0.9 (13.3) (3.4) 0.9 15.5 (1.3) 31.5 14.2
def2-SVP 128.2 99.2 26.4 144.0 112.1 266.8 216.2 227.4
def2-TZVPP 4.9 36.9 9.6 5.4 42.4 9.0 84.1 41.8
def2-QZVPPc (0.6) 15.6 4.0 (0.7) 18.2 (1.2) 36.8 16.2
ano-pVDZ 13.1 82.6 21.9 15.0 92.9 29.0 173.0 95.7
ano-pVTZ 2.6 30.4 7.9 2.8 34.9 4.5 65.9 33.0
ano-pVQZ 0.8 12.9 3.3 0.9 15.0 1.7 28.4 13.7
acc-pVDZ 16.6 92.5 24.5 18.3 104.7 30.2 202.2 109.2
acc-pVTZ 3.7 35.6 9.3 4.1 40.5 7.0 78.5 39.3
acc-pVQZ 1.1 15.2 3.9 1.2 17.6 2.3 35.6 16.2
rcc-pVDZ 36.3 89.1 23.7 42.0 100.5 83.1 192.9 125.5
rcc-pVTZ 9.0 32.1 8.3 10.4 36.8 20.3 72.4 41.1
rcc-pVQZ 2.0 13.4 3.4 2.4 15.5 4.8 31.3 15.4

larger default basis sets
aug-cc-pVDZ 32.4 84.1 22.4 37.3 94.4 75.0 177.1 116.5
aug-cc-pVTZ 8.2 29.8 7.8 9.4 34.1 18.6 66.3 38.0
aug-cc-pVQZ 1.7 12.2 3.1 2.0 14.2 4.4 28.3 14.0
sano-pVDZ+ 7.0 67.3 17.6 7.9 76.4 13.1 143.3 74.3
sano-pVTZ+ 1.4 12.4 6.9 1.5 30.9 2.5 58.5 28.2
sano-pVQZ+ 0.5 11.9 3.1 0.5 13.8 0.9 26.5 12.3
ano-pVDZ+ 5.0 53.4 13.7 5.7 61.6 11.0 115.4 58.4
ano-pVTZ+ 0.9 20.9 5.4 1.0 24.1 2.0 47.6 21.8
ano-pVQZ+ 0.2 8.7 2.3 0.3 9.9 0.5 19.5 8.9
Roos-ANO-DZPd 6.7 65.8 17.6 7.7 73.4 15.7 133.5 72.5
Roos-ANO-TZPd 1.4 23.3 6.1 1.6 26.6 2.7 51.0 24.6
NASA-AMES-ANOe 1.1 12.4 3.2 1.2 14.3 1.6 28.3 13.4

explicitly correlated (R12) CCSD(T)e

ano-pVDZ 13.1 22.1 6.5 15.0 25.4 29.0 51.7 23.1
ano-pVTZ 2.6 7.5 2.1 2.8 9.1 4.5 19.7 7.7
ano-pVQZ 0.8 2.8 0.8 0.9 3.4 1.7 7.6 2.8
ano-pVDZ+ 5.0 11.5 3.3 5.7 13.3 11.0 26.9 11.8
ano-pVTZ+ 0.9 3.6 1.0 1.0 4.4 2.0 9.5 3.6
ano-pVQZ+ 0.2 1.6 0.5 0.3 1.9 0.5 4.0 1.6
cc-pVDZ 39.9 25.1 7.6 45.7 28.3 88.2 55.3 27.8
cc-pVTZ 9.8 9.0 2.5 11.1 10.9 21.3 23.5 9.5
cc-pVQZ 2.2 3.7 1.0 2.5 4.6 5.0 10.2 3.9
aug-cc-pVDZ 32.4 16.0 4.8 37.3 17.7 75.0 32.7 17.2
aug-cc-pVTZ 8.2 6.1 1.7 9.4 7.3 18.6 15.7 6.2
aug-cc-pVQZ 1.7 2.7 0.7 2.0 3.4 4.4 7.6 2.7
cc-pVDZ-F12 10.8 13.5 3.8 12.3 16.1 22.8 34.8 13.9
cc-pVTZ-F12 2.0 5.0 1.4 2.3 5.8 4.7 11.9 5.1
cc-pVQZ-F12 0.2 1.7 0.5 0.2 2.0 0.3 4.1 1.8

a The best result in each category of basis set (DZ, TZ, QZ) is printed in bold. If the best result is obtained with a slightly larger basis set,
it is put in parentheses. MUE ) mean unsigned error; RMS ) root-mean square error; MAX ) maximum error; SCF ) Hartree-Fock
energy; EC ) CCSD(T) correlation energy. b The pc-3 basis set contains 6s5p4d2f1g contractions for B-Ne and is therefore the same size
as sano-pVQZ+. c The def2-QZVPP basis set contains 7s4p3d2f1g contractions and is therefore of similar size to sano-pVQZ+. d The
Roos-ANO basis sets contain the same number of functions as the ano-pVDZ+ and ano-pVTZ+ basis sets. NASA-AMES ANO is the same
size as ano-pVQZ. e The CABS correction to the SCF energies have been included in the right-most column.

Revisiting the Atomic Natural Orbital Approach J. Chem. Theory Comput., Vol. 7, No. 1, 2011 37



It is obvious from the results obtained with sano-pVXZ+
and ano-pVXZ+ that limited improvements can be obtained
from further augmentation of the basis set. The sano-pVDZ+
results are significantly better (∼4%) than those obtained
with ano-pVDZ, but already sano-pVTZ+ is rather similar
to ano-pVTZ. The comparison between ano-pVXZ+ and
ano-pV(n+1)Z confirms that in order to reach the next level
of accuracy it is more important to add the next higher
angular momentum polarization function rather than to
extend the existing polarization sets.

4.3. Total Energies. Since the ano-pVXZ basis sets of a
given size have shown the best SCF and simultaneously the
best correlation energies, it is trivial that they also show the
best total energy in comparison with the reference values.
The effects are most pronounced for the DZ and TZ basis
sets where the ANO-basis sets are clearly superior to the
“def2”, “cc”, and “pc” bases of the same size. For the QZ
bases, all construction schemes start to converge to the same
values, and the mean unsigned deviations are all between
13 and 16 mEh for the present test set. This error is
dominated by the errors in the correlation energies that are
still an order of magnitude larger than the SCF error.

4.4. Explicitly Correlated (R12) Energies. We also
performed a series of CCSD(T)R12 calculations using the
newly developed ano-pVXZ basis sets as well as standard
correlation-consistent basis sets (cc-pVXZ and aug-cc-pVXZ)
and the recently developed cc-pVXZ-F12 basis set of
Peterson et al., who specifically optimized their basis sets
for R12 methods.36 The immediate objective of these efforts
was to examine whether the newly developed ANO basis
sets are suitable for R12 methods, even though they were
not constructed with such calculations in mind. We also
wanted to see whether it is worth employing the ANO
approach for constructing basis sets specifically suited for
explicitly correlated (R12) methods.

Because the R12 correction only reduces the basis set error
of the correlation energy, the basis set error of the SCF
energy is relatively more significant in the context of
explicitly correlated methods. The RMS error of the (aug)-
cc-pVXZ SCF energy is larger than that of the correlation
energy for X ) D, is comparable to the latter for X ) T,
and is smaller than the latter for X ) Q. With the ano-pVXZ
basis setssby virtue of their much improved SCF energysthe
correlation energy error is always greater than the error of
SCF energy. Peterson et al. used this observation in the
design of the cc-pVXZ-F12 basis sets: the cc-pVXZ-F12
basis is similar in structure to the aug-cc-pVXZ basis, with
the exception of more s and p primitives and the greater
number of s and p shells in the former. The latter feature is
largely responsible for the improved SCF energies obtained
with the VXZ-F12 basis sets. The additional s and p functions
dramatically reduce the basis set error of the cc-pVXZ-F12
SCF energy compared to its (aug)-cc-pVXZ counterpart. As
a result, the basis set error of SCF energy with cc-pVXZ-
F12 bases is always much smaller than that of the corre-
sponding CCSD(T)R12 correlation energy. The ano-pVXZ
basis sets are comparable in their SCF energy performance
to the cc-pVXZ-F12 counterparts, except for X ) Q. The

ano-pVXZ+ family, as expected, produces the smallest SCF
energy errors.

Note that the error of SCF energy can be greatly reduced
by including the CABS singles correction: indeed, the mean
unsigned error of the total energy including the CABS
correction is similar to the error of correlation energy with
all basis sets. Although the evaluation of the CABS singles
correction requires the evaluation of Coulomb integrals with
two auxiliary basis set indices, its cost is negligible compared
to that of the R12 correction. Without such a correction, the
ano-pVXZ and cc-pVXZ-F12 basis sets produce smaller SCF
energy errors and thus should be preferred to the cc-pVXZ
and aug-cc-pVXZ series.

Let us now turn our attention to the basis set error of
CCSD(T)R12 correlation energy. The initial applications of
modern R12 methods utilized the standard correlation-
consistent basis set families. The cc-pVXZ series was,
however, found to result in less accurate correlation energies
than its aug-cc-pVXZ counterpart; thus all applications of
R12 methods used the augmented correlation-consistent
series. However, the aug-cc-pVXZ basis sets contain highly
diffuse functions, and molecular studies in “real life”
applications are often complicated by (near) linear depend-
encies in the basis set. For ANO basis sets, the higher
members of a given angular momentum contain more and
more nodes that extend into the outer region of the molecule,
and hence these functions may take on the role of diffuse
functions. However, the lack of uncontracted diffuse primi-
tives in the ANO basis sets may lead to problems in the
calculations of weak interactions and on anions or highly
excited states. These subjects will be investigated in the
future.

The performance of the newly developed ano-pVXZ series
for R12 correlation energies falls in between the cc-pVXZ
and aug-cc-pVXZ series: ano-pVDZ basis results in RMS
correlation energy error similar to that of cc-pVDZ, whereas
the ano-pVQZ basis is comparable in that sense to the aug-
cc-pVQZ basis. The ano-pVXZ+ basis sets, which have the
same number of functions as the aug-cc-pVXZ family, are
significantly better than the latter. These encouraging findings
suggest that the uncontracted low-exponent (diffuse) basis
functions do not haVe to be included in larger basis sets for
R12 calculations; as mentioned above, avoiding such func-
tions is crucial for avoiding linear dependencies and poorly
conditioned equations in computations on large molecules.

The ano-pVXZ basis sets are inferior to the cc-pVXZ-
F12 basis sets for computing correlation energies with R12
methods. However, the ano-pVXZ+ basis sets, which have
even slightly fewer basis functions than the cc-pVXZ-F12
basis sets, produce the most accurate correlation energies.
For example, the RMS(EC) obtained with the ano-aug-pVQZ
basis is 1.9 millihartree, which is 0.1 millihartree smaller
than that with the cc-pVQZ-F12 basis. This is an interesting
finding: the cc-pVXZ-F12 series was designed specifically
for R12 methods, whereas the new ano-pVXZ+ series was
not. For example, the structure of cc-pVXZ-F12 bases is
similar to that of aug-cc-pVXZ; the former yield smaller
RMS(EC)’s due to the reoptimized polarization functions;
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this suggests that reoptimization of the (aug)-ano-pVXZ basis
sets for R12 methods may improve their performance
similarly.

Thus, the limited set of explicitly correlated calculations
with the new ano-pVXZ+ basis set series hints that specific
optimization of ANO basis sets for R12 calculations might
be fruitful. Potential improvement to the level of what is
obtained with the cc-pVXZ-F12 basis sets should be within
reach. Such basis sets should be numerically amenable for
applications to large molecules due to their lack of uncon-
tracted diffuse functions (of course, diffuse functions will
have to be included for computations on anions or Rydberg
states).

5. Extrapolated Energies

One important aspect of the basis set construction is to
investigate whether a given family of basis sets can be used
to reliably extrapolate (components of) the energy to the basis
set limit. Basis set extrapolation is a standard technique in
atomic physics, where partial wave expansions suggest the
appropriate extrapolation formula. In molecular calculations,
basis set extrapolation is more empirical and relies on the
systematic structure of the basis set series. Dunning’s work
on correlation consistent basis sets instantly spurred a flurry
of developments in basis set extrapolation techniques. Several
formulas for extrapolation of the correlation energy exist:
the work of Helgaker et al., who suggested the use of inverse
cubic extrapolation formula.4,39 This formula suggests that
the complete basis set limit correlation energy can be
obtained as a linear combination of the correlation energies
obtained with cc-basis sets X and Y:

Truhlar pointed out that for practical computational chemistry
applications, usually at most X ) 2 and Y ) 3 is feasible.40

For these low cardinal numbers, the cc-bases do not reliably
obey the asymptotic law, and hence Truhlar has investigated
a more flexible form:

and determined the optimum exponent � to be 2.4 for the
combination of cc-pVDZ, cc-pVTZ, and CCSD or CCSD(T)
from calculations on Ne, HF, and H2O. Truhlar’s approach
was later shown by Schwenke41 to be a special case of a
general approach that approximates the CBS limit energy
as a linear combination of energies computed with X, Y, Z,
etc. basis sets; coefficients in the linear expansion are specific
to each method (SCF, CCSD, etc.) and each set of basis sets.
For two basis sets, eq 2 can be rewritten in Schwenke’s
form:41

Hence there is a 1:1 correspondence between exponent �
and the unknown linear coefficient f(X,Y). We have followed
this recipe by using eq 2 and reoptimized the exponent �
for each pair of basis sets that was investigated.

Perhaps surprisingly, the extrapolation of the SCF energy
appears to be more difficult than the extrapolation of the
correlation energy. Halkier et al.43 established that expo-
nential extrapolationsas long pursued by Feller44,45sis more
successful than the power law used by Truhlar. More
recently, Petersson and co-workers have studied the problem
in detail and have used46 an extrapolation of the form:

(the equation is attributed to Karton and Martin47). For their
new basis sets (nZaP), the constant R ) 6.3 was found to
be universally valid. We have followed Petersson and co-
workers but have fitted R to each pair of basis sets used for
extrapolation.

Thus, in the extrapolation study, we have fitted one
parameter to the SCF energies and one parameter to the
correlation energies to minimize the total mean unsigned
error for the 21-molecule test set; the optimal values of
parameters are given in Table 3. Qualitatively, extrapolations
that lead to � ) 3 and a relatively small R are preferred.
Under these circumstances, the correlation energy extrapola-
tion is thought to be most physically sound, and the less
steep SCF energy extrapolation is expected to be more robust
in actual applications.

Among the 2/3 extrapolations, the rcc-pV(D/T)Z pair
slightly outperforms the other basis sets of the same size,
and only cc-pV(D/T)Z comes close. Hence, the use of
contracted polarization functions does appear to improve the
quality of at least the lower member of the cc-basis set
family. Nevertheless, the differences between the various
basis sets are not large and amount to about 0.5 mEh in the
total energy on average. Augmentation of the ANO basis
sets does improve the results, and with ano-pV(D/T)Z+, the
mean unsigned error of the extrapolated total energy of 1.27
mEh must be considered as an excellent result. It is, in our
opinion, impressive that with such a simple extrapolation
scheme one can compute the reference energy with an
average unsigned error of less than 2 mEh. In particular, the
error in the SCF energy can be reduced to below 1 mEh
using the extrapolation formula of Petersson and co-workers,
while the Truhlar-Schwenke extrapolation provides cor-
relation energies within 2-3 mEh from the reference values.
The results lend credence to Truhlar’s choice of � ) 2.46.
All extrapolations with the 2/3 pairs come close to this value.

All 3/4 extrapolations reduce the SCF error to 0.1-0.4
mEh, with the best results being obtained with the def2 basis
sets. However, pc-n, ano-pVXZ, sano-pVXZ+, rcc-pVXZ,
and cc-pVXZ are all similarly good. The extrapolation of
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the Roos-ANO with the NASA-AMES set is not fair and
has therefore been omitted from Table 3. Pleasingly, all 3/4
extrapolations (except the one for pc-n) come up with an
optimum � that is close to the preferred value of 3. Hence,
for all intents and purposes, it could be replaced by just 3
once one proceeds beyond the 2/3 extrapolation level. In any
event, the extrapolated 3/4 energies almost all fall within 1
mEh of the reference values, which is considered pleasing.
From this perspective, the choice of the particular 3/4 set
might not be overly important and could be done under
consideration of computational convenience. In particular,
the results demonstrate that the def2-TZVPP/def2-QZVPP
pair is well suitable for extrapolation, and the pc-2/pc-3 result
is even one of the best in the test set. We do, however, view
the latter result with some reservation due to the unphysical
exponent of 4.09 in the correlation energy extrapolation, the
steep SCF exponent, and a large amount of error cancellation
between the errors in the SCF and correlation energy
extrapolations. In terms of the SCF extrapolation, the ANO
basis sets lead to the least steep extrapolation and may
therefore be preferred.

6. Comparison of Extrapolation and Explicit
Correlation

Despite the impressive improvement of correlation energy
due to the use of explicitly correlated methods, the total R12
energies obtained with ano-pVTZ and aug-cc-pVTZ basis
sets are approximately 3.5 times less accurate than the
corresponding 2/3 extrapolated values. The corresponding
quadruple-� ratio is approximately 4. However, at this level,
the errors are so small that they probably fall within the error
bar of the reference data itself that was “only” obtained
through 5/6 extrapolation. The use of cc-pVXZ-F12 basis
sets optimized specifically for explicitly correlated methods
improves the comparison in favor of R12 methods, but
nevertheless, extrapolated energies are more accurate by a
factor of 3. The comparison with ano-pVXZ+ is most
favorable to the R12 calculations: they are only a factor of
2-2.5 worse than the extrapolated results. Thus, at present,
the R12 methods are not competitive with extrapolation for
the total energies. However, one can, of course, combine
R12 methods with extrapolation, as already pursued by Hill
et al.48

It would be imprudent to overly generalize these findings.
Our past experience with extrapolation methods suggests that
their spectacular performance for total energies does not

transfer intact when applied to relative energies.48 This is
particularly evident from the fact that the extrapolated
correlation energies may either overshoot or undershoot the
true correlation energy, while the error in the correlation
energies is always positive in the explicitly correlated
methods. Although the Hylleraas functional for the R12
correlation energy provides an upper bound to the exact
value, in practice, the upper bound property is not guaranteed
due to the inexact Hartree-Fock solution and various
approximations involved in R12 methods. The violations are,
however, small, and with the modern R12 methods, the basis
set limit of energy is approached from above (the basis set
error is positive). A more complete and fair comparison of
the extrapolation methods vs R12 methods will involve the
construction of ANO-type basis sets specifically optimized
for R12 methods, and application to relative energies of
interest to chemists (reaction energies, activation barriers).
This study is outside the scope of this work.

7. Computational Details

All calculations reported in this work were carried out with a
development version of the ORCA program package;49 the
MPQC (http://www.mpqc.org/mpqc-snapshot-html/index.html,
accessed July 11th, 2010) and Psi3 (http://www.psicode.org/
index.html, accessed July 11th, 2010) packages were used
for all explicitly correlated calculations. Geometries were
optimized with the B3LYP functional50-52 in conjunction
with the def2-TZVP53 basis set. The geometrical parameters
thus obtained are (atomic units and degrees): H2 (R )
1.406421), BH3 (RBH ) 1.1898, D3 h), CH4 (RCH ) 2.05898,
Td), NH3 (RNH ) 1.91599, H-N-H ) 107.312°,
H-N-H-H ) 115.067°), H2O (ROH ) 1.81975, H-O-H
) 105.237°), FH (R ) 1.747475), B2 (R ) 3.661983), BC
(R ) 2.554910), BN (R ) 2.491487), BO (R ) 2.272142),
BF (R ) 2.390700), C2 (R ) 2.357244), CN (R ) 2.319042),
CO (R ) 2.126086), CF (R ) 2.410890), N2 (2.061850),
NO (R ) 2.164009), NF (E ) 2.491128), O2 (R ) 2.276277),
OF (R ) 2.550064), F2 (R ) 2.639683). Coupled cluster
CCSD(T) calculations were performed with the 1s orbital
kept frozen (except for hydrogen, of course). Open shell
species were treated in the unrestricted formalism and without
restrictions on the spatial part of the wave function.

Explicitly correlated CCSD(T) computations on closed-
shell molecules were performed with the CCSD(T)R12 method
of Valeev et al.26,54,55 The geminal amplitudes were fixed
at the values determined by the first-order cusp conditions.

Table 3. Errors of the Extrapolated SCF and Correlation Energies Relative to the Reference Data (in mEh where Applicable)

2/3 extrapolation 3/4 extrapolation

R23 �23 MUE(EHF) MUE(EC) MUE(Etot) R34 �34 MUE(EHF) MUE(EC) MUE(Etot)

cc-pVXZ 4.42 2.46 0.61 2.00 1.77 5.46 3.05 0.22 0.60 0.75
aug-cc-pVXZ 4.30 2.51 0.65 2.06 1.86 5.79 3.05 0.17 0.53 0.68
pc-n 7.02 2.01 0.90 2.69 2.76 9.78 4.09 0.17 0.41 0.28
def2 10.39 2.40 0.47 2.10 2.01 7.88 2.97 0.10 0.66 0.67
ano-pVXZ 5.41 2.43 0.72 2.84 2.20 4.48 2.97 0.18 0.62 0.64
sano-pVXZ+ 5.48 2.21 0.32 1.86 1.68 4.18 2.83 0.11 0.28 0.32
ano-pVXZ+ 5.12 2.41 0.20 1.29 1.27 5.00 2.52 0.09 0.31 0.38
acc-pVXZ 4.80 2.34 0.85 1.61 1.81 4.92 2.94 0.36 1.17 1.29
rcc-pVXZ 4.43 2.47 0.69 1.82 1.44 5.46 3.00 0.17 0.56 0.72
Roos-ANO 5.15 2.50 0.41 2.19 2.22
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Three- and four-electron integrals were approximated using
the CABS+ approach56 with the uncontracted cc-pV6Z basis
as the auxiliary basis set. The standard R12/C approxima-
tion57 was used throughout to approximate the so-called B
intermediate of the R12 theory. Exponential (Slater-type)
correlation factor e-γr12 fitted to six Gaussian geminals was
used in all calculations; geminal exponent γ ) 1.4 a0 was
used in all calculations except those involving the cc-pVXZ-
F12 basis sets,58 for which the recommended geminal
exponents were used. The R12 correction of the CCSD(T)R12

method was computed using robust density fitting (DF);42

the following {orbital, density-fitting} basis set combinations
were used: {ano-pVXZ, aug-cc-pV6Z-RI (C. Hättig, Uni-
versity of Bochum, Germany, unpublished)}, {cc-pVXZ,
cc-pV(X+1)Z-RI},59,60 {aug-cc-pVXZ, aug-cc-pV(X+1)Z-
RI}, and {cc-pVXZ-F12, cc-pV(X+1)Z-RI}. Total energies
reported in the rightmost column of Table 2 also include
the second-order energy correction from single excitations
to the CABS manifold correction.26

Atomic calculations were performed with uncontracted
Gaussian basis sets as described in the main body of the
paper. Calculations were tightly converged on the atomic
ground states: He(1S), B(2P), C(3P), N(4S), O(3P), F(2P), and
Ne (1S). MR-ACPF calculations were performed on top of
the CASSCF states using all configurations in the CAS
including those of the wrong symmetry or with an insufficient
number of open-shell orbitals as references. No contraction
or selection of the interacting space was employed, and the
calculations were converged to 10-12 Eh. The first order
density was constructed and diagonalized in order to obtain
atomic natural orbital contractions.

8. Conclusions

In this work, basis set construction strategies for correlated
calculations on molecules were investigated. In particular,
it was studied whether the family of correlation consistent
basis sets could possibly be improved by incorporating
elements of atomic natural orbital construction in their design.
The answer to this question is positive: ANO basis sets
deliversprovided they are derived from a sufficiently ac-
curate set of primitive Gaussianssmuch better SCF and
slightly better correlation energies than correlation consistent
basis sets. The replacement of the uncontracted polarization
functions with the contracted ANO ones (rcc-pVXZ) yields
a significant but still somewhat limited improvement in the
calculated correlation energies, while replacing the s and p
parts of the cc-bases with their ANO counterparts (acc-
pVXZ) does improve the SCF energies but not the correlation
energy. Thus, one seems to be well advised to keep the full
ANO contractions in order to obtain the best results at a given
basis set size. This also is the most consistent strategy if
algorithms can be devised to obtain the integrals over
generally contracted basis sets efficiently for larger mol-
ecules. This will be discussed elsewhere.

A significant finding of the present study is the large
increase in the accuracy of the SCF energies if one only
supplements the ano-pVXZ with the next set of valence
functions (saug-pVXZ). The increase in the number of basis
functions by four per heavy atom is already limited at the

DZ level (19 instead of 15 basis functions) and very small
for the higher members of the basis set family. Since the
integrals over all primitive members of the underlying set
must be calculated anyway, the increase in computation time
cannot be overly disturbing once the computational procedure
is highly optimized. The full augmentation with the next set
of polarization functions (ano-pVXZ+) comes at a high
computational cost in the correlation energy calculation,
while the gains in accuracy appear to be somewhat limited
compared to the calculation with the next higher cardinal
number.

The gain in accuracy obtained with the ano-pVXZ basis sets
relative to their cc-pVXZ parents is considerable at the double-�
level, limited but significant at the triple-� level, and more
limited for the quadruple-� variant. Indeed, it was particularly
the performance of the double- and triple-� cc bases that was
the main motivation for the present work. With explicitly
correlated R12 methods, the performance of ano-pVXZ+ bases
was superior to that of the cc-pVXZ-F12 basis sets of Peterson
and co-workers that were specifically optimized for R12
methods. The combination of these compact basis sets lacking
numerically troublesome uncontracted diffuse basis functions
with explicit correlation and local correlation approaches appears
to be a fruitful route toward accurate computational chemistry.
The results of Werner and co-workers61-63 along these lines
appear to be very promising.

The situation changes somewhat if the SCF and correlation
energies are extrapolated to the basis set limit. In this work,
the SCF extrapolation technique recently proposed by
Peterson and co-workers has been combined with the
correlation energy extrapolation of Truhlar that is based on
the work of Helgaker and co-workers as well as Schwenke.64

One parameter was optimized for the SCF energies and one
for the CCSD(T) correlation energy for each pair of basis
sets considered. Among the double-/triple-� basis set com-
binations, the cc-pV(D/T)Z sets were again found to perform
best, but all extrapolations lead to total energies within 2.5
mEh of the reference values. Again, augmentation improves
the results obtained with the ANO bases. For the triple-qua-
druple-� basis set extrapolations, the differences between the
various basis set combinations become rather small, and one
typically reaches better than 1 mEh deviation from the
reference values. It is noteworthy that even with basis sets
that were optimized for SCF calculations (pc-2/pc-3, def2-
TZVPP/def2-QZVPP) one obtains excellent extrapolations
to the SCF and CCSD(T) correlation basis set limits. While
for the double/triple-� basis set pairs Truhlar’s observation39

that the optimum extrapolation coefficient for the correlation
energy is around 2.4 was confirmed, for the triple/
quadruple-� basis set pairs, all basis set pairs (except pc-2/
pc-3) show optimized exponents close to the theoretically
expected values of 3, which is considered pleasing. Recently,
Petersson and co-workers have reported an effort toward
extrapolation techniques for molecular calculations and have
devised a new series of basis sets. So far, they have published
results for SCF energies40 and more recently also for MP2.46

It will be interesting to compare these results with the ones
that have been obtained in this work once they become
publically available.
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Having realized the superior accuracy of ano-pVXZ sets
compared to segmented bases, it is necessary to develop
computational algorithms that ease the burden of integral
evaluation. Most integral programs take little advantage of
contraction, and the cost of integral evaluation increases with
the fourth power of the contraction depth. This clearly leads
to extremely expensive calculations for the deeply contracted
ano-pVXZ basis sets. Thus, unless procedures that are
specifically targeted toward ANO contraction are employed,
the use of the ano-pVXZ or any other ANO basis in routine
molecular calculations is not attractive. Such techniques have
been developed in the framework of the ORCA program and
will be reported elsewhere. For a long time, the MOLCAS
package has also been optimized for this task, as is amply
documented by the many successful molecular applications
on the basis of the Lund group ANO basis sets. We do not
claim great superiority of our ANO sets over the ones initially
constructed by Almlöf and Taylor19-21 or by Roos and
co-workers.21,22,65 The emphasis of the present work was
the comparison between various basis set construction
strategies with the main result that the ANO construction
scheme appears to be the most successful one if only the
number of basis functions but not the contraction depth is
of concern. An efficient implementation of an ANO-based
SCF and coupled cluster program within the ORCA package
will be described elsewhere.

The various ANO basis sets discussed in this paper have
been constructed from H-Ar and will be provided to the
public via the EMSL basis set library and the Supporting
Information of this manuscript. We expect that for first row
transition metals, the basis sets designed by Roos and co-
workers can safely be combined with the ano-pVXZ series.
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Abstract: In order to investigate charge resonance situations in molecular complexes, Wu et
al. (J. Chem. Phys. 2007, 127, 164119) recently proposed a configuration interaction method
with a valence bond-like multiconfigurational basis obtained from constrained DFT calculations.
We adapt this method to the Self-Consistent Charge Density-Functional-based Tight Binding
(SCC-DFTB) approach and provide expressions for the gradients of the energy with respect to
the nuclear coordinates. It is shown that the method corrects the wrong SCC-DFTB behavior
of the potential energy surface in the dissociation regions. This scheme is applied to determine
the structural and stability properties of positively charged molecular dimers with full structural
optimization, namely, the benzene dimer cation and the water dimer cation. The method yields
binding energies in good agreement with experimental data and high-level reference calculations.

1. Introduction

The description of neutral molecular clusters requires the
consideration of various contributions of the intermolecular
energy, including Pauli repulsion, polarization, electrostatics
(static multipole interactions), induction forces (multipole-
induced multipole interactions), and London dispersion. The
treatment of the electronic structure of singly ionized
molecular clusters also needs to consider charge resonance,
which may cause the charge to be partially or totally
delocalized over the molecular units and polarization con-
tributions due to the influence of the charge. Both lead to a
stabilization of the charged species as compared to the
analogous neutrals. A proper description requires correct
balance between charge delocalization and polarization
forces.

While Density Functional Theory (DFT) is an appealing
method for describing the electronic properties of clusters
with dozens, maybe hundreds, of atoms, at least in single
point calculations, most common functionals are known
to fail in properly describing dispersion forces. This is

the first handicap to deal with by treating molecular
clusters. The search for new functionals accounting for
dispersion1-9 (for a review, see ref 10) is a very active
field, while semiempirical corrections to standard DFT
calculations are also used.11-18 The description of charge
resonance in molecular clusters is another serious problem
in standard density functional approaches. Using the
Kohn-Sham formalism with these functionals, one arising
problem is due to the self-interaction of the delocalized
charge. Many investigations have addressed the analysis
and correction of the self-interaction error arising with
approximated DFT functionals (see, for instance, refs
19-38). This error is particularly prevalent in the dis-
sociation of radical cations.35,36 Similarly, a cationic
molecular dimer involving two identical units should
dissociate into one molecular cation and one neutral, but
in a restricted DFT scheme, the charge is asymptotically
equally shared by the two units, breaking the energy
additivity and further introducing a spurious Coulomb
interaction between the two moieties. Although such an
artifact is essential in the dissociation, it is also expected
to play a role all over the potential energy surface,
including the equilibrium geometries.
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mathias.rapacioli@irsamc.ups-tlse.fr.

J. Chem. Theory Comput. 2011, 7, 44–5544

10.1021/ct100412f  2011 American Chemical Society
Published on Web 12/13/2010



A correct description of dissociation is in principle easily
obtained by the use of a multiconfigurational wave function.
It can be achieved by high-level methods like Configuration
Interaction39,40 (CI)-based methods (Multi-Configurational
Self-Consistent Field,41 MCSCF; Multi-Reference Config-
uration Interaction,42 MRCI) or Coupled Cluster43 (CC)
approaches (for a review, see ref 44) but at a high
computational cost. Such calculations may provide bench-
marks on reasonably small systems (essentially dimers) but
rapidly exceed today’s possibilities as soon as the molecular
units exceed a few tens of atoms.

One of the tracks for circumventing the drawbacks of the
present state DFT in an ab initio framework is to combine
CI, for describing long-range (lr) electron-electron interac-
tions, and DFT, for the short-range electron-electron
interactions (sr). This gave rise to the lr-sr formalism
following Savin’s formulation,45-48 enabling combinations
of Møller-Plesset (MP) perturbation,49-51 CC, and/or CI
approaches with DFT. This formulation is quite attractive;
nevertheless, its numerical cost is significantly larger than
that of a standard DFT calculation.

Alternatively, charge resonance (or excitation resonance)
is described quite simply in valence bond-like approaches52-55

by explicitly considering the multiconfigurational nature of
the wave function via the definition of a basis arising from
configurations in which the charge (or excitation) is localized
on a given fragment of the system. This is the essence of
the excitonic models originating from solid state physics (see
for instance ref 56 and references therein) but also used in
molecular materials and even biological systems. An ap-
plication to cationic molecular clusters of polycyclic aromatic
hydrocarbon (PAH) was published by Bouvier et al.,57

defining a resonance charge model based on frozen molecules
and parametrized from ab initio CI calculations on dimers.
Diatomics-in-molecule modeling of singly ionized rare gas
clusters can also be expressed in a valence bond picture with
a basis of atom-localized hole configurations and no internal
geometrical structure.58-60 That paved the way for extensive
simulations of the electronic and dynamical properties of
ionized rare gas clusters (see for instance Calvo et al.61,62).

More recently, the concept of a valence bond configuration
description in a DFT framework was proposed by the group
of Van Voorhis et al.63-69 to investigate charge delocalization
in mixed valence compounds exhibiting possible bistability
with the perspective of controlling charge transfer. They
developed a method combining Constrained DFT,63-65 used
to build charge localized configurations, with a small CI-
like scheme (CDFT-CI) to deal with charge delocalization
in extended systems. From the computational point of view,
it is extremely appealing for singly charged clusters, since
the static correlation associated with charge resonance is
treated by the CI-like scheme, which in this case is linear
scaling (as would be complete active space self-consistent
field CASSCF70 with a single hole in the MOs resulting from
the HOMOs of the individual molecules), and the dynamical
correlation is treated at the DFT level in a single configu-
ration scheme (whereas a CASSCF would need complement-
ing with dynamical correlation, for instance, CASPT271). For
addressing large systems, Self-Consistent-Charge Density-

Functional-based Tight Binding (SCC-DFTB)72-75 is inter-
esting since it is computationally faster than DFT. It is
derived from DFT through several approximations allowing
the use of tabulated overlap and interaction integrals.

As SCC-DFTB is derived from DFT, it also inherits its
lack of describing charge resonance with standard functionals
essentially due to the self-interaction error. Detailed analysis
of this problem in DFT proposals for self-interaction free
functionals were given by Grafenstein et al.35,36,76 Interest-
ingly, some of those schemes produce localized orbitals. The
transfer of such a concept within the DFTB framework would
certainly be of interest. However, self-interaction corrections
should introduce many centers’ contributions into the DFTB
parameters representing the Coulomb-exchange-correlation
contribution, beyond the two-center approximations for
electron-electron interaction integrals, a key point of the
DFTB efficiency. This would require analytical assumptions
for these terms, further parametrization, and transferability
checking.

Recently, we presented a preliminary application of the
CDFT-CI method in the SCC-DFTB framework also using
approximations to determine the CI couplings. We studied
coronene clusters with constrained geometries, because of
the lack of gradients.77 One of the interests of CDFTB-CI is
to be safe in regard to all dissociation channels, even
multicenter fragmentation.

In the present paper, we present the general adaptation of
the CDFT+CI method to the SCC-DFTB framework, with
the aim of future investigations of charge resonance in
molecular clusters with large sizes. This method is called
DFTB-VBCI (Valence Bond CI). In order to perform
geometry optimizations, we also derive analytical expressions
for the energy gradients with respect to the nuclear coordi-
nates. It allows us to achieve full structural optimization for
the benzene dimer and water dimer cations, respectively.

Section 2 is devoted to the presentation of the general
methodology, the DFTB-VBCI approach, and the derivation
of analytical expressions for the nuclear forces. In section
3, we benchmark the method on ionic benzene and water
dimers on the basis of comparisons with high-level calcula-
tions. A summary and perspectives are given in section 4.

2. Methodology

The DFTB-VBCI method is an adaptation of the CDFT+CI
approach63-69 to the SCC-DFTB scheme with the aim of
treating charge resonance in ionized molecular clusters. In
this approach, the wave function of the system Ψ is
expressed in a basis {ΦI} of configurations. For each
configuration, the charge is localized on a given fragment
of the system. The intuitive decomposition of a molecular
cluster leads to identifying the Nfrag fragments as the
monomers, and the wave function becomes

where ΦI is the configuration where the charge is fully
carried by fragment I. Each charge localized configuration
ΦI is a single Slater determinant, built from the molecular

Ψ ) ∑
I

Nfrag

bIΦ
I (1)

Modeling Charge Resonance J. Chem. Theory Comput., Vol. 7, No. 1, 2011 45



orbitals (MO) {φi
I} resulting from a constrained SCC-DFTB

calculation. These VB like configurations then interact within
a small CI-like scheme, giving their coefficients bI in the
wave function and the ground state energy.

In this methodological part, we first briefly recall the SCC-
DFTB scheme basics (section 2.1) before explaining the
derivation of the charge localized configurations ΦI using
the constrained SCC-DFTB (section 2.2) and the CI-like
scheme calculation (section 2.3). We present then analytical
expressions for the nuclear gradients (section 2.4) and some
further approximations to accelerate the approach (section
2.5). We adopt different font conventions to distinguish
between matrices expressed in different basis sets. For
instance, a Hamiltonian matrix is written as H in the atomic
orbital (AO) basis set; H in the MO basis set, and H in the
determinant basis set (the basis of the charge-localized
configurations).

2.1. DFT and SCC-DFTB. Several reviews on the DFTB
and SCC-DFTB methods can be found in the literature.72-75

SCC-DFTB differs from Kohn-Sham DFT expressed on a
local basis set according to the following approximations:
(i) The DFT energy is expanded up to the second order with
respect to charge density fluctuations around a given refer-
ence density. (ii) All three center interaction integrals are
neglected as well as two center integrals involving atomic
orbitals belonging to the same atom. (iii) The MOs are
expressed in a minimal atomic basis set

(iv) The short distance repulsive potential is expressed as a
function of two body interactions. (v) The second-order term
in the DFT energy expansion is expressed as a function of
atomic Mulliken charges and a Γ matrix. With those
approximations, the total SCC-DFTB energy reads

where Ĥ0 is the Kohn-Sham operator at the reference density
and ER�

rep is the repulsive potential between atoms R and �.
The matrix elements of Ĥ0 expressed in the atomic basis set
as well as ΓR� and ER�

rep are interpolated from two body DFT
calculations. ni represents the atomic orbital occupation
numbers, and qR represents the atomic Mulliken charges. The
energy minimization is obtained by self-consistently solving
the secular equation

S is the atomic basis overlap matrix, and the Hamiltonian
matrix reads H ) H0 + H1 with

where µ ∈ R means that the atomic orbital µ belongs to atom
R.

Additional terms can be added to account for London
dispersion (Edisp) forces as a sum over atomic pairs.14,78,79

The deMonNano code80 was used as a starting point to
implement these developments.

2.2. Constrained SCC-DFTB. Similarly to the con-
strained DFT,63-65 the MOs {φi

I}, used to build the config-
uration ΦI, are obtained from a minimization of the SCC-
DFTB energy with the constraints that the charge is carried
by fragment I and that the orbitals are orthonormalized. The
corresponding Lagrangian is

where VI is the Lagrange multiplier ensuring the charge
localization constraint, P̂I is the projector of the density on
fragment I, NI is the number of electrons on fragment I,
which constrains the charge to be localized on this fragment,
and Λij represents the Lagrange multipliers ensuring the
orbitals’ orthonormality constraints. Wu and Van Voorhis65

discussed the effect of several localization schemes, based
on different charge definitions (Mulliken,81 Löwdin,82 and
Becke’s multicenter integration scheme83), on the constrained
energy, finally using the Löwdin approach. We used for the
constrained SCC-DFTB the Mulliken charge definition
because (i) the defects of Mulliken charges are less crucial
in SCC-DFTB than in DFT due to the use of a minimal
atomic basis set (no diffuse functions) and, (ii) in the most
used version, SCC-DFTB is a Mulliken charge-based ap-
proach, and all of the matrices have been parametrized for
this charge definition. This choice leads to the expression
for the constraint

with PI being the projection matrix expressed as65

The H matrix used in the secular equation (eq 4) becomes

Similarly to the constrained DFT, eq 4 must now be solved
self-consistently over the atomic charges and contains an
unknown Lagrange multiplier VI. To overcome some con-
vergence problems, we have implemented three ways of
solving this equation that can be used alternatively until one
of them converges:

(i) The first one (similar to that of ref 63) consists of
solving the secular equation with an inner loop and an outer
loop. In the inner loop, the Hamiltonian is calculated with a
fixed set of atomic charges, and the Lagrange multiplier VI

is modified so that the MOs diagonalizing the Hamiltonian
satisfy the charge localization constraint. The outer loop is
the self-consistent loop over the atomic charges.

φi ) ∑
µ

ciµ�µ (2)

ESCC-DFTB ) ∑
R,�*R

atoms

ER�
rep + ∑

i

ni〈φi|Ĥ
0|φi〉 +

1
2 ∑

R,�

atoms

ΓR�qRq�

(3)

∑
ν

ciν(Hµν - εiSµν) ) 0 ∀µ, i (4)

Hµ∈R;ν∈�
1 ) 1

2
Sµν ∑

�

atoms

(ΓR� + Γ��)q� (5)

L ) ESCC-DFTB({φi
I}) + ∑

ij

Λij
I (〈φi

I|φj
I〉 - δij) +

VI( ∑
i

ni〈φi
I|P̂I|φi

I〉 - NI) (6)

∑
iνµ

niciν
I ciµ

I Pνµ
I ) NI (7)

Pµν
I ) {0 if µ ∉ I and ν ∉ I

Sµν if both µ ∈ I and ν ∈ I
1
2

Sµν for other cases (µ ∈ I or ν ∈ I)

H ) H0 + H1 + VIPI
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(ii) The second approach consists of inverting the two
previous loops; i.e., the inner loop ensures the self-
consistence over the Mulliken charges, and the external loop
allows the determination of the Lagrange multiplier VI.

(iii) The third approach is somewhat different and consists
of three steps. First, a MOs guess is generated for the isolated
fragments. The full set of MOs is orthonormalized with a
Löwdin procedure. These MOs do not correspond to an
energy minimum and do not satisfy the charge localization
constraint. In the second step, the MOs evolve to change
charge on fragment I with the iterative procedure:

where n is the iteration step. The last term ensures the
orthonormalization constraint. Transposing this equation in
the atomic basis set gives the evolution of the MOs:

where X ) RS-1Λ. At each step, the R coefficient is adapted
to increase or decrease the charge on fragment I, and the X
matrix is calculated solving a second-order equation equiva-
lent to the Rickaert algorithm84 already implemented for
SCC-DFTB Car-Parrinello molecular dynamics.85 Once a
solution satisfying the density constraint is achieved, the last
step consists of relaxing the MOs to minimize the energy,
under conservation of the charge localization and orthonor-
mality constraints

giving the evolution of the coefficients

This step requires both the calculation of X and VI. Starting
from a given VI (the one in the previous step if n > 1), CI(n
+ 1) is determined, calculating X with the Rickaert algorithm.
The charge carried by fragment I with these new coefficients
is calculated. If this charge is too large (respectively too
small), VI is decreased (respectively increased). The process
is repeated until the charge constraint is satisfied. Finally,
the MOs converge to the charge-localized solution.

2.3. The Configuration Interaction-Like Scheme. The
set of MOs {φi

I}, obtained from a constrained SCC-DFTB
calculation, is used to build the charge-localized configura-
tions ΦI as single Slater determinants. The coefficients bI of
these configurations in the total wave function Ψ (see eq 1)
are obtained by solving the CI-like scheme:

where SIJ is the two-configuration overlap 〈ΦI|ΦJ〉 and HII

is the energy of the configuration ΦI already calculated with
the constrained SCC-DFTB. Following the approach of Wu
et al.,66,67 the coupling elements HIJ are calculated by

In the case of degenerate systems, one can also include more
than one configuration to represent the charge localization
on a given fragment, as will be shown in the applications of
section 3. Solving eq 12 provides both the ground state of
the system and some excited states generated via charge
resonance. Although these excited states are also of interest,
for instance, in spectroscopy, we focus in this work only on
the ground state which corresponds to the lowest eigenvalue
Eg.

2.4. Analytical Gradients. Derivatives of the energy with
respect to atomic nuclear coordinates are required to perform
molecular dynamics or geometry optimization. Their nu-
merical calculation is possible by finite differences, but the
number of energy calculations (2 × 3Natoms) turns out to be
quite large, even for small systems. Thus, an analytical
expression is of primary interest. In SCC-DFTB, it is
convenient to use the derivatives of the matrix elements (H0,
S, Γ) which are known and tabulated. Differentiating the
constrained SCC-DFTB energy with respect to the nuclear
coordinate Rba of atom a leads to the force expression

We now present the calculation of derivatives for the di-
agonal and off-diagonal elements separately. The differentia-
tion operator ∇ba is replaced by the symbol ∂a to simplify
the expressions.

2.4.1. DeriVatiVe of the Diagonal Element. The diagonal
element HII is the energy of the configuration ΦI. Dif-
ferentiating the DFTB energy (eq 3 with the dispersion
correction terms) and using the eigenvalue equation (eq 4),
the molecular charge conservation (eq 7) and orthonormality
constraints lead to the analytical expression (see also Wu
and Van Voorhis64):

2.4.2. DeriVatiVe of the off-Diagonal Elements. The dif-
ferentiation of the off-diagonal elements is obtained by
differentiating eq 13, namely

with

φi
I(n + 1) ) φi

I(n) + R(pI
φi

I(n) + ∑
j

φj
I(n)Λij) ∀i (8)

CI(n + 1) ) CI(n) + R(S-1PICI(n) + XCI(n)) (9)

φi
I(n + 1) ) φi

I(n) + R( dE

dφi
I/
+ ∑

j

φj
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φi
I)

(10)

CI(n + 1) ) CI(n) + R(S-1HCI(n) + XCI(n) +
VIS-1PICI(n)) (11)

(H11 H12 .. H1n

H21 H22 .. H2n

: : :: :
Hn1 . .. Hnn

)(b1

b2

:
bn

) ) E( S1 S12 .. S1n

S21 S2 .. S2n

: : :: :
Sn1 . .. Snn

)(b1

b2

:
bn

)
(12)

HIJ )
1
2

(HII + HJJ + NIVI + NJVJ)SIJ -

1
2

(VI〈ΦI|P̂I|ΦJ〉 + VJ〈ΦI|P̂J|ΦJ〉) (13)

∇baEg ) ∑
IJ

bIbJ(∇
b

aHIJ - Eg∇
b

aSIJ) (14)

∂aHII ) ∂aE
rep + ∑

i

ni ∑
µν

ciνciµ(∂aHµν
0 + VI

∂aPµν
I +

(Hµν
1

Sµν
- εi)∂aSµν) + qa ∑

b

∂aΓabqb + ∂aE
disp (15)

∂aHIJ;I*J )
1
2

AIJ +
1
2

AJI
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We must now express the derivatives of the Lagrange
multiplier ∂aVI and those of the overlaps (real overlap and
through the projectors) between ΦI and ΦJ. As there is no
relationship between the MOs of the two configurations, there
is no Hellman-Feynman type simplification for the deriva-
tives of their overlaps. The analytical derivatives of the orbital
coefficients and of the Lagrange multipliers must be explicitly
calculated. The derivatives of the coefficients have already
been expressed for DFT (see, for instance, ref 86) by solving
the coupled perturbed equations. The expression only differs
here through the term containing the constraint.

For a given configuration ΦI, the derivative of the
coefficients of the orbitals {φi

I} can be related to the orbitals
themselves through a u matrix

The conservation of normalized MOs already imposes the
form of the diagonal term of the u matrix

For the off-diagonal elements uij; i*j, differentiating eq 4
leads to

where ∂aS and ∂aH are the derivatives of the SCC-DFTB
overlap and Hamiltonian matrices expressed in the molecular
orbital basis set

In the constrained SCC-DFTB, the Hamiltonian matrix
derivatives depend (i) on the derivatives of the matrices H0,
S, Γ, and P; (ii) on the derivatives of the coefficients; and
(iii) on the derivatives of the Lagrange multipliers. These
three contributions are now explicitly separated:

where ∂aFij contains the first contribution

with

The second term in eq 21 accounts for the Hamiltonian
dependences on the orbital coefficients with

and

where µ ∈ R; ν ∈ �; ω ∈ γ. In the last term of eq 21, Pij

accounts for the Hamiltonian differentiation upon the Lagrange
multiplier

Compacting the ij indices in a single m index and the kl
indices in a single n index, we now define

and rewrite eq 19

We now determine ∂aVI using the fact that NI remains
constant. Differentiating eq 7 leads to

which can be expressed with the u matrix:

Using the previous expression for u leads to the following
expression for the derivatives of the Lagrange multiplier:

AIJ ) (∂aHII + NI
∂aV

I)SIJ + (HII + NIVI)∂aSIJ

- 〈ΦI|PI|ΦJ〉∂aV
I - VI

∂a(〈Φ
I|PI|ΦJ〉)

(16)

∂aciµ
I ) ∑

k

ckµ
I uki (17)

uii ) -1
2 ∑

µν
ciµ

I ciν
I
∂aSµν (18)

uij )
∂aHij - εj∂aSij

εj - εi
(19)

∂aSij ) ∑
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ciµ
I cjν

I
∂aSµν
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(20)
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∂aH can now be calculated from eq 21, as well as the u
matrix from eq 19, and finally the derivatives of the
coefficients from eq 17. The SIJ derivatives are computed
from the MO coefficient derivatives and the derivatives of
the AO overlap matrix. For sake of efficiency, the determi-
nant expansions appearing in the calculation of the deriva-
tives were calculated using the Sherman-Morrison for-
mula.87 A similar approach is applied to the derivatives of
the projected overlap matrix 〈ΦI|PI|ΦJ〉.

Let us mention that, as a check, the analytical gradients
have been compared to gradients obtained from finite
difference calculations for a set of random geometries. The
mean absolute value of forces was 1.4 × 10-2 au with a
root-mean-square of 1.8 × 10-2 au, and the mean absolute
error was 2.1 × 10-5 au with a root-mean-square of 2.5 ×
10-5 au.

2.5. Variant of the DFTB-VBCI: The HOMO
Approximation. We will consider the following approxima-
tion to the DFTB-VBCI approach: we assume that, in a
molecular cluster, the MOs of the different charge localized
configurations mostly differ through their Highest Occupied
Molecular Orbital (HOMO). The overlaps and projected
overlaps between two configurations can then be simplified
as

The off-diagonal CI matrix element becomes

The advantage of this approach is the ability to avoid any
Slater determinant overlap calculation, and only the deriva-
tives of the HOMO coefficients need to be calculated.

3. Applications

We will now apply the DFTB-VBCI method to two prototype
cationic molecular clusters, namely, the benzene dimer and
the water dimer. All calculations have been performed on a
desktop computer (an Intel Xeon 2.8 GHz monoprocessor).
Compared with DFTB, the DFTB+VBCI method is more
time-consuming. For instance, a single point calculation
(without gradients computation) for a water dimer performed
over 6 × 10-3 s at the DFTB level takes 0.1 s with the
DFTB+VBCI. The single point calculation for the benzene
dimer increases from 0.07 s at the DFTB level to 1.67 s at
the DFTB+VBCI level. In an optimization procedure, the
calculation of the gradient has a small effect on the water
dimer (0.14 s per step) but a large effect on the benzene
dimer (17 s. per step). Although the computational time is

larger than for a simple DFTB calculation, which is the price
to pay for treating the charge resonance effects correctly with
this method, it remains much lower than high level ab initio
methods, a typical optimization of about 100 steps for a
benzene dimer taking half an hour.

3.1. The Cationic Benzene Dimer. Several authors have
investigated cationic benzene dimer clusters at high levels
of theory, addressing the relative stability of characteristic
isomers, namely, the sandwiches (stacked, parallel x- and
y-displaced) and T-shaped configurations (see Figure 1 and
Table 1). Let us cite for instance the work of Miyoshi et
al.88,89 which used a Complete Active Space Self-Consistent
Field (CASSCF) followed by a Multi-Reference Coupled Pair
Approximation (MRCPA) with a (73/7) basis set decon-
tracted to (721/52) for C and Dunning’s DZ set (31) for H.
The sandwich parallel displaced isomers were found to be
the most stable structures, with binding energies around 12.3
kcal mol-1, more stable than the T-shaped ones by 6.4 kcal
mol-1. A similar study was performed by Pieniazeck et
al.90,91 with the Equation-Of-Motion Coupled-Cluster model
with Single and Double substitutions for ionized systems
(EOM-IP-CCSD/6-31+G*). This calculation yields the same
isomer ordering as CASSCF-MRCPA and a similar energy
difference between parallel displaced and T-shaped struc-
tures. The absolute binding energies are however much
higher than for CASSCF-MRCPA (19.58 versus 12.3 kcal
mol-1 for the x-displaced sandwich). In the following, the
EOM-IP-CCSD results will be used as references to bench-
mark our model because (i) the structures have been fully
optimized, whereas the CASSCF-MRCPA ones have only
been optimized at the CASSCF level, and (ii) the binding
energies are in good agreement with the experimental studies,
providing values in the 15-20 kcal/mol range.92-98

The D6h symmetric stacking is another structure of interest,
which is slightly less stable (about 1-2 kcal mol-1) than
the two sandwich displaced isomers. We notice that DFT
calculations97,99,100 performed with the B3LYP functional
give reasonable binding energies for the sandwich structure
(17-19 kcal mol-1) but underestimate the energy difference
between the two structures.

∂aV
I ) -

∑
i

∑
µν

niciµciν∂aPµν + 2 ∑
ij
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0Pij

2 ∑
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niu'jiPij
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I |φHOMO

J 〉 + 〈φHOMO
I |PI|φHOMO

J 〉
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1
2

(HI + HJ)〈φHOMO
I |φHOMO

J 〉

-1
2

(VI〈φHOMO
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I |PJ|φHOMO

J 〉)
(31)

Figure 1. Benzene dimer cations optimized at the DFTB-
VBCI level. (a) T-shaped, (b) T_Csob, (c) sandwich stacked,
(d) x-displaced, and (e) y-displaced isomers.
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Following Pieniazek et al.,90 we call πg
a and πg

o the
degenerate MOs in the neutral benzene molecule. In the
ionized monomer, these two levels are degenerate at the neu-
tral geometry but undergo Jahn-Teller distortion, leading
to an acute angle configuration (ionization from the πg

a

orbital) or an obtuse angle configuration (ionization from
the πg

o orbital). We follow the electronic description of the
Dimer Molecular Orbitals Linear Combination from the
Fragment Molecular Orbitals (DMO-LCFMO90), to describe
a benzene dimer, labeling the two fragments A and B. In
this framework, the constrained state A+B can be obtained
from removing one electron from either the πg

a or the πg
o

orbitals of A. Consequently, we need two configurations to
describe the constrained form A+B. In the case of the
symmetric D6h sandwich stacked dimer, these two A+B
configurations are degenerate and are built as follows: we
use the constrained SCC-DFTB to minimize the electronic
energy with an occupation of 1.5 for the two highest occupied
MOs (HOMO and HOMO-1) orbitals and 2 for the
energetically lower lying orbitals. The two A+B configura-
tions are then built from the obtained MOs as shown in
Figure 2. The same procedure is applied to obtain two AB+

configurations, and the CI matrix, which has to be diago-
nalized, is a 4 × 4 matrix.

In the other isomers (displaced sandwiches and T-shaped),
the πg

a and πg
o orbitals of each fragment are no longer

degenerate, and one could in principle calculate the energy
of these configurations without using fractional occupation
numbers. However, we could not obtain a self-consistent
solution of the A+B state (respectively AB+) with the
constrained SCC-DFTB since the πg

a and πg
o orbitals on

fragment A (respectively on B), although not degenerate,
remain close in energy. We therefore decided to keep the
procedure used for the D6h stacked sandwich isomer, filling
the HOMO and HOMO-1 orbitals with 1.5 electrons.
Although the filling of the MOs is fixed, these MOs relax
anyway and are no longer degenerate in the final results due
to the coupling with geometry relaxation. This fractional
occupation of the HOMOs would also be usefull to describe
the dissociation, keeping the same occupation of the orbitals
(see ref 101). Finally, we mention that we use in the empirical
dispersion term the parameters of Rapacioli et al.79 already
benchmarked for PAH clusters.

3.1.1. The Stacked Sandwich Isomer. We first discuss the
results obtained for the stacked sandwich in the D6h geometry.
Figure 3 represents the energy of the dimer corresponding
to the dissociation along the z axis, orthogonal to the planes
of the monomers. For this example, the fragments are frozen
at the monomer neutral geometry. The zero energy reference
corresponds to the sum of the separated fragments calculated
independently, namely, E(C6H6

+) + E(C6H6). The SCC-
DFTB dissociation curve is reminiscent of the wrong
dissociation curve of radical molecules like H2

+ calculated
with DFT (see for instance refs 35 and 36) and can be
explained as follows. First, the SCC-DFTB energy does not
converge to the sum of the energies of the fragments at the
dissociation limit. At infinite distance, the charge is equally
distributed over the two fragments. As the evolution of the
self-interaction error with the number of electrons
on a fragment is unfortunately not constant or linear,
we have 2 × ESCC-DFTB(C6H6

0.5) * ESCC-DFTB(C6H6
+) +

ESCC-DFTB(C6H6). At shorter distances, the energy in-
creases, and a barrier is even observed before reaching
the minimum, which is here a metastable minimum. The
responsible repulsive contribution has a 1/R behavior and
can be attributed to the artificial repulsion of two half-
charged fragments, which is a different kind of self-
interaction than the on site one. Finally, the minimum is
much too low in energy as compared to the reference
calculations (see Table 1). This overstabilization of
delocalized states is a well-known effect of the self-
interaction error.102,103

As can be seen from Figure 3, the DFTB-VBCI method
does not present the wrong behavior pattern of the SCC-
DFTB curve. At the dissociation limit, the energy converges
to the sum of the energies of the fragments. In eq 12, the
overlaps and coupling terms vanish, and the energies of the
localized configurations are degenerate. These energies are

Table 1. Binding Energies (kcal/mol) of the Cationic Benzene Dimer Obtained at Different Levels of Theorya

DFTB-VBCI HOMO Approx. SCC-DFTB EOM-IP-CCSD DFT CASSCF + MRCPA

stacked sandwich 17.70 17.91 29.53 18.34b 18.2d-19.1e

x displaced 20.90 20.43 29.01 19.58c 12.3g

y displaced 21.26 20.79 29.21 19.81c 16.57f 10.9g

T-shaped 9.23 16.90 24.68 12.41c 15.7d

T_Csob 9.19 unstable unstable

a The stacked sandwich structure correspond to constrained D6h optimization whereas the other isomers are fully optimized with the
respective methods. b Pieniazek et al.90 c Pieniazek et al.91 d Ibrahim et al.97 e Itagaki et al.99 f Kryachko.100 g Miyoshi et al.89

Figure 2. Two electronic configurations (right) obtained from
constrained SCC-DFTB calculation with noninteger occupation
numbers (left).

Figure 3. Dissociation potential energy curves of the cationic
benzene dimer in the stacked sandwich configuration calcu-
lated with SCC-DFTB and DFTB-VBCI approaches.
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calculated with the electronic density corresponding to one
charged and one neutral monomer and not that of two half-
charged fragments. The Coulombic self-interaction 1/R
repulsion also disappears with this approach, as well as the
corresponding barrier. Finally, the binding energy for the
stacked sandwich (17.70 kcal/mol) is significantly smaller
than the SCC-DFTB one (29.53 kcal/mol) and yields a much
better agreement with that of the EOM-IP-CCSD calculation
at 18.34 kcal/mol. The interplane distance is 2.84 Å, which
is smaller than the 3.3 Å reported at the EOM-IP-CCSD(T)
level.90

The dissociation curve obtained by applying the HOMO
approximation detailed in section 2.5 is also plotted in Figure
3. It is almost identical to the DFTB-VBCI curve with a
binding energy of 17.91 kcal/mol vs 17.70 kcal/mol for the
DFTB-VBCI.

3.1.2. The T-Shaped and Displaced Sandwich Isomers.
The T-shaped and displaced sandwiches have been optimized
without any geometrical constraint. The binding energies are
reported in Table 1. The T-shaped isomer has a binding
energy of 9.23 kcal/mol, which is slightly smaller than the
EOM-IP-CCSD one. Another difference concerns the charge
localization. With EOM-IP-CCSD, the charge is mostly
localized on the stem fragment (88%), whereas its localiza-
tion drops to 56% with the DFTB-VBCI. A possible
explanation for this charge localization discrepancy could
be related to some lack of stabilization by polarization. In
DFTB-VBCI, the benzene π system can be polarized in the
direction parallel to the benzene ring. However, due to the
reduced basis set used, the polarization of the π system
perpendicular to the benzene ring is underestimated. This
lack of polarization could be at the origin of the destabiliza-
tion of the configuration where the charge is carried by the
stem fragment, leading to an oversharing of the charge and
an underestimation of the binding energy. Another explana-
tion could rely on the choice of the charge analysis method,
which is a NBO analysis for the ab initio calculation and
Mulliken analysis in the DFTB-VBCI. These two charge
definitions are known to produce sometimes different charge
distributions even for similar electronic densities. The
distance between the centers of the two molecules is 4.52
Å, in good agreement with the EOM-IP-CCSD one (4.59
Å).

In the neutral benzene dimer, the most stable structures
have often been reported to be “tilted” T-shaped (also called
Cs over atom/bond) configurations.10,79,104,105 In the cation,
the corresponding structures have been reported to be
transition states100 (DFT-B3LYP level). Optimizing the Csob
structure at the DFTB-VBCI level leads to a minimum
(metastable, 11.7 kcal/mol above the global minimum). The
energy difference with the T-shaped structure is smaller than
0.05 kcal/mol, certainly below the accuracy of the method.

At the SCC-DFTB level, the x- and y-displaced dimers
are overstabilized as compared to reference calculations.
Similarly to what is observed for the stacked sandwich dimer,
the DFTB-VBCI approach gives considerably improved
binding energies (20.90 and 21.26 kcal/mol) in very good
agreement with those of EOM-IP-CCSD (19.58 and 19.81
kcal/mol). As already found for the D6h benzene case, the

interplanar distance is shorter (2.71 and 2.78 Å) compared
to EOM-IP-CCSD(T) results (3.08 and 3.18 Å). The sideward
shiftings are 1.00 and 1.12 Å, compared to 1.07 (x-displaced)
and 0.72 (y-displaced) Å at the EOM-IP-CCSD(T) level91

(these shifts are 1.0 Å for both isomers when freezing
Jahn-Teller relaxation90).

The two structures are almost degenerate, with a slightly
more stable y-displaced dimer. The energy difference is
however probably much smaller than the expected accuracy
of our approach. These are clearly cases in which quantum
vibrational effects should be considered.

The global trend when relaxing the geometries compared
to neutral dimers is to reduce intermolecular distances. For
instance, the interplanar distances in displaced sandwich
structures are 2.71/2.78 Å, smaller than those obtained for
the neutral dimer (3.39 Å) at the DFTB level.79 The sideward
shifting is also reduced 1.0/1.13 Å versus 1.36 Å in the
neutral dimer. The same trend is observed for the T-shaped
isomer in which the distance between the molecular centers
is reduced from 4.82 to 4.52 Å in the cationic dimer.

Applying the HOMO approximation to the DFTB-VBCI
leads to very similar results. The most stable structures are
the x- and y-parallel displaced ones with binding energies
differing by less than 2.5% from those of DFTB-VBCI. The
T-shaped structure is found to be less stable than the previous
isomers, but its binding energy is overestimated as compared
to reference calculations and DFTB-VBCI. This suggests that
the differences between the charge localized configurations
cannot be reduced to a change in the HOMO. We also notice
that with this approximation the Csob does not correspond
anymore to a minimum, the optimization leading to the
T-shaped structure.

3.2. The Cationic Water Dimer. The potential energy
surface of cationic water dimers has been investigated using
high-level of theories106-111 (see Table 2). The stable
structures belong to two families (Figure 4). In the first
one, the two water monomers are superimposed in an
antisymmetric pattern, and the charge is equally distributed
over the two units. The second one results from a proton
transfer leading to two nonsymmetric units [H3O-OH]+,
in which the charge is mostly localized on the H3O
fragment. The structures found to be minima in ref 110

Table 2. Binding Energies (kcal/mol) of Cationic Water
Dimer Obtained at Different Levels of Theory

[H2O-H2O]+ [H3O-OH]+ (Cs) [H3O-OH]+ (C1)

DFTB-VBCI 35.44 42.31
HOMO Approx. 35.74 42.33
SCC-DFTB 68.33 47.12
GGC 53.73a 48.66a

BLYP 58.4b 49.3b

B3LYP 51.5b 49.8b

MPW1K 42.9b 49.9b

BH&HLYP 41.4b 49.9b

MP2 40.48b/43.5c 50.9c 46.47b

MP4 41.1c 49.9c

CCSD(T) 39.53b/39.59d 46.64d 46.70b/46.68d

MCPF 36.1e 45.9e 45.93e

a Barnett and Landman.112 b Lee and Kim.111 c Gill and
Radom.106 d Cheng et al.110 e Sodupe et al.107 MCPF ) SCF +
electron correlation included with size extensive Modified-
Coupled-Pair Functional.
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have been taken as starts for optimization using the DFTB-
VBCI method.

3.2.1. The [H3O-OH]+ Isomer. Table 2 compares the
binding energies obtained at the SCC-DFTB level to those
resulting from other calculations. For the [H3O-OH]+

isomer, most of the DFT functionals (except for the BH&H)
give reasonable results as compared to CCSD(T) values.
Similarly, the binding energy obtained at the SCC-DFTB
level, without CI correction, is close to that of CCSD(T)
(47.12 versus 44.6-46.7 kcal mol-1).

In this system, DFTB-VBCI considers the interaction
between the configurations where the positive charge is
localized either on the H3O or on the OH fragments. At the
dissociation limit, the constrained form (H3O+-OH) is
obtained by fixing occupation numbers of 1.5 for the two
degenerate HOMOs on the neutral OH fragment (in order
to maintain the degeneracy of the OH πx and πy orbitals),
the other occupied orbitals being doubly occupied. The
second constrained form (H3O-OH+) is obtained with
occupation numbers of 0.5 for the two degenerate HOMOs
of the neutral H3O fragment and 0.5 the two degenerate
HOMOs on the ionized OH fragment, the other orbitals being
doubly occupied. In the complex, the degeneracies are lifted
but, similarly to the benzene dimer, we decided to keep these
fixed occupation numbers in order to prevent some conver-
gency problems and to have a continuous description of the
dissociation, which may be useful in future works.

The weights of the two configurations in the CI approach
indicate that the charge is mostly localized (99.9%) on the
H3O fragment. In CCSD(T) calculations, the charge is also
strongly localized on this fragment but only by 88% from a
restricted open-shell Hartree-Fock level with natural popu-
lation analysis.110

The DFTB-VBCI minimum (Cs-trans) is different from
the C1 minimum obtained with CCSD(T). However, in
CCSD(T), the Cs-trans isomer corresponds to a transition
state 0.04 kcal/mol higher in energy than the global C1

minimum110 (0.1 kcal mol-1 for the EOM-IP-CCSD108 and
0.03 kcal/mol at the SCF+MCPF level107). Such a small
energy difference is far beyond the expected accuracy of the
DFTB-VBCI method. The binding energy of the Cs-trans
isomer is close (42.31 kcal/mol) to that obtained with a
simple SCC-DFTB calculation (47.12 kcal/mol). This is due
to the fact that the charge is not significantly delocalized
between the two fragments and that the SCC-DFTB calcula-
tion already attributes most of the charge to the H3O
fragment. The artificial stabilization by the self-interaction
error is therefore less crucial. This also explains why most

of the DFT functionals give reasonable results for this
structure. Concerning the geometry, the distance between the
two oxygen atoms is 2.66 Å, close to the value of 2.5 Å
usually found.107,108,110,111 The hydrogen bonding is over-
estimated with 1.74 Å compared to values between 1.44 and
1.47 Å at a high level of calculations.107,108,110,111

3.2.2. The [H2O-H2O]+ Isomer. It can be seen from
Table 2 that, at the CCSD(T) level, the [H2O-H2O]+ isomer
is less stable by 7 kcal/mol than the [H3O-OH]+ isomer.
At the DFT level, the binding energy strongly depends on
the choice of the functional. For instance, the [H3O-OH]+

structure is more stable than [H2O-H2O]+ with MPW1K,
BH&H, and BH&LYP functionals, but it is the opposite with
the BLYP, BPW91, HCTH407, and B3LYP function-
als. At the SCC-DFTB level, the binding energy of the
[H2O-H2O]+ isomer is strongly overestimated (68 versus
39 kcal mol-1 for CCSD(T)), making this isomer 23 kcal/
mol more stable than the [H3O-OH]+ isomer. The DFTB-
VBCI leads to a significant improvement, reducing the
binding energy to 35.44 kcal/mol, a value close to CCSD(T)
results (39 kcal/mol). In this isomer, the charge is equally
distributed between the two equivalent fragments. The
overstabilization observed at the SCC-DFTB level is at-
tributed to the self-interaction error due to the strong
delocalization and is corrected by the DFTB-VBCI approach.
This is in line with the fact that self-interaction corrected
functionals successfully predict this structure to be less stable
by about 8 kcal mol-1 than the proton transferred isomer.108

The distance between the two oxygens is 2.05 Å, in
agreement with values between 2.02 and 2.05 Å at higher
levels of calculation.107,108,110,111 We notice that our geom-
etry corresponds to a C2h symmetry, whereas this optimized
configuration is often reported in a C2 geometry (see refs
108, 110, and 111). However, Cheng et al.110 found that C2

and C2h structures degenerate at the CCSD(T) level.
Finally, we notice (Table 2) that for both the [H3O-OH]+

and [H2O-H2O]+ isomers, the binding energies obtained
with the HOMO approximation are very close to that
obtained with the full DFTB-VBCI method.

4. Conclusion

An extended method combining a VBCI-like scheme with
SCC-DFTB has been developed. The method has been
implemented together with its analytical gradients to enable
complete optimization, including the intra- and intermolecular
degrees of freedom.

We have benchmarked the DFTB-VBCI approach on the
ionized dimers of benzene and water. It is shown for the
benzene dimer cation that the self-interaction error is at
the origin of the unphysical behavior of the SCC-DFTB
dissociation energy curve. It is fully corrected with DFTB-
VBCI, as detailed for the stacked sandwich. The binding
energies obtained for different isomers with the DFTB-VBCI
method agree well with those of high-level calculations as
well as experimental data, while these energies are strongly
overestimated with SCC-DFTB. We however notice that the
main error for the DFTB-VBCI binding energy concerns the
T-shaped structure, which is understabilized by 3 kcal/mol.
This may be due to the use of point charges and a possible

Figure 4. Water dimer cations optimized at the DFTB-VBCI
level. (a) [H3O-OH]+ isomer and (b) [H2O-H2O]+ isomer.
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mistreatment of the multipolar nature of the benzene π
system interacting with that of the charged stem benzene.
Further improvement of the DFTB-VBCI could include such
a multipolar description of the π system as used, for instance,
in accurate force field calculations113 in order to account for
this effect but at the price of a larger computational effort
to derive the energy gradient.

The second benchmark system is the ionized water dimer.
The two lowest energy isomers strongly differ by a proton
transfer. The binding energy of the [H3O-OH]+ isomer
calculated at the DFT level with several functionals is in
good agreement with reference calculations. This is also the
case with SCC-DFTB and DFTB-VBCI due the localization
of the charge on the H3O fragment, reducing the multicon-
figurational nature of the wave function and the self-
interaction error in standard DFT-based calculations. On the
contrary, in the [H2O-H2O]+ isomer, the charge is equally
carried by the two fragments, and the binding energies
obtained at the DFT level strongly differ depending on the
choice of the functional. With SCC-DFTB, this structure is
overstabilized and becomes artificially the most stable one. This
effect is corrected with the DFTB-VBCI approach, which gives
a binding energy close to that of high-level calculations.

For the two benchmark systems, the binding energies are
in quantitative agreement with those of higher levels of
calculation. Concerning the geometries, some differences
have been observed with those of high level calculations,
the most critical one being the interplane distance in benzene
sandwich structures. This could be due to the reduced basis
used in DFTB leading to an underestimation of overlaps and
consequently charge resonance stabilization at large dis-
tances. Neglecting the three body integrals in the DFTB could
also play a role, which is difficult to estimate.

In this work, we have been concerned with the analytical
derivation of the gradients, and optimizing the efficiency of
the code will be a further step. One of the key computational
difficulties is the double SCF involving both the charge and
constraint. Efficiency could certainly be strongly improved
by using extrapolation schemes of the Lagrangian parameter
and atomic charges (Broyden114 or Pulay115 schemes) also
transferring the SCF densities from one geometry to the next
one. In the gradient computation, most of the time is spent
in the calculation of the inverse of the A matrix, which could
be calculated iteratively. Starting from the inverse of A
calculated at the previous step would reduce the number of
iterations. All of these improvements would of course not
affect the accuracy of the method.

Beyond molecular clusters, the direct applicability of the
method to the fragmentation of organometallic complexes
might be less straightforward. The present scheme requires
an a priori identification of the ligand metal partition, which
may not be unique; then one possibility could be to use small-
scale fragments, for instance, one per ligand. The present
scheme has been applied to cationic systems. Dealing with
the localization/delocalization process in anionic molecular
clusters could be considered with a simillar scheme. How-
ever, the treatment of the molecular negative units is not
very reliable since DFTB is expressed in a minimal valence
basis, while the description of molecular anions even with

DFT generally requires extended basis sets with diffuse
functions and even sometimes very diffuse functions for
describing dipole- and quadrupole-bound anions.

We now plan to perform global explorations of the
potential energy surfaces through molecular dynamics or
Monte Carlo sampling with the aim of studying ionized dimer
dissociation. When the advantage of SCC-DFTB in terms
of computational efficiency is taken, the DFTB-VBCI will
allow for dealing with systems much larger than dimers. In
our previous study, DFTB-VBCI has been used to character-
ize binding energies, ionization potentials, as well as charge
localization in stacked coronene clusters with frozen intramo-
lecular geometries and equal spacings between the units.77 This
preliminary work was however performed before the develop-
ment of the analytical nuclear gradients, and it will be of interest
to characterize the effects of intra- and intermolecular relaxation
in these clusters. As for the hole delocalization, one could expect
similar patterns as those of the rare gas clusters Hen

+, Nen
+, Arn

+,
Krn

+, and Xen
+, for which the hole tends to delocalize on a few

units (from 2 to 4, depending on the rare gas) and the other
atoms tend to organize in crowns around a linear core.116 We
plan to investigate how the monomer internal degrees of
freedom, the molecular extension, and the shape influence the
size of the core unit and the general organization in molecular
clusters with polyatomic monomers. Another perspective will
be to study charge dynamics in such clusters, which is possible
since the model also provides charge transfer excited states.
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(35) Gräfenstein, J.; Kraka, E.; Cremer, D. J. Chem. Phys. 2004,
120, 524–539.
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Jesús Graciani,† Antonio M. Márquez,† José J. Plata,† Yanaris Ortega,†
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Abstract: The outstanding catalytic properties of cerium oxides rely on the easy Ce3+T Ce4+

redox conversion, which however constitutes a challenge in density functional based theoretical
chemistry due to the strongly correlated nature of the 4f electrons present in the reduced
materials. In this work, we report an analysis of the performance of five exchange-correlation
functionals (HH, HHLYP, PBE0, B3LYP, and B1-WC) implemented in the CRYSTAL06 code to
describe three properties of ceria: crystal structure, band gaps, and reaction energies of the
CeO2 f Ce2O3 process. All five functionals give values for cell parameters that are in fairly
good agreement with experiment, although the PBE0 hybrid functional is found to be the most
accurate. Band gaps, 2p-4f-5d in the case of CeO2 and 4f-5d in the case of Ce2O3, are found
to be, in general, overestimated and drop off when the amount of Hartree-Fock exchange in
the exchange-correlation functional decreases. In contrast, the reaction energies are found to
be underestimated, and increase when the amount of HF exchange lowers. Overall, at its
standard formulation, the B1-WC functional seems to be the best choice as it provides good
band gaps and reaction energies, and very reasonable crystal parameters.

1. Introduction

Cerium oxides, either CeO2 or nonstoichiometric CeO2-x,
hereafter referred to generically as ceria, have traditionally
played the role of a support material in components of
catalysts used in several chemical processes. Typical ex-

amples of industrial applications are the three-way catalysts
in automotive catalytic converters, fluid-cracking catalysts in
refineries, and ethylbenzene dehydrogenation catalysts used
during the production of styrene.1,2 Ceria is also an active
component in low-temperature CO and VOC oxidation cata-
lysts, wet-oxidation of organic pollutants in water, hydrocarbon-
reforming and the water-gas-shift reaction. Initially, the pro-
moting effect of ceria was attributed to the enhancement of the
metal dispersion and the stabilization toward thermal sintering.3,4

However, subsequent work has shown that ceria can act as a
chemically active component as well, working as an oxygen
reservoir able to deliver it in the presence of reductive gases
and to incorporate it upon interaction with oxidizing gases.5-7

Its ability to store, release, and transport oxygen ions indicates
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that ceria is not just a mere spectator but it takes part in the
catalytic reaction. For instance, in the case of oxidation reactions
catalyzed by vanadia, the catalytic activity appears to be highly
enhanced when supported on ceria as compared to more inert
supports as silica and alumina.8-11 Similar behavior is clearly
seen in the case of the water-gas shift reaction, where
experiments carried on Rh/CeO2 and on pure CeO2

12,13 reveal
striking differences. Also, the very recent work of Park et al.14

and of Rodriguez et al.15,16 illustrates the importance of
stabilizing Ce3+ centers and the role of the ceria nanoparticles.

The outstanding properties of ceria, and, consequently, the
broad use in heterogeneous catalysis are due to its facile Ce3+

T Ce4+ redox conversion,17 however, the adequate descrip-
tion of the electronic configuration of Ce3+ ions constitutes
a challenge in density functional based theoretical chemistry
due to the strongly correlated nature of the 4f electrons.
Indeed, the 4f electrons in Ce2O3 are localized and the
material behaves like a typical antiferromagnetic Mott-
Hubbard insulator.18 However, due to the well-known lack
of cancellation of the Coulomb self-interaction, DFT ap-
proaches within the LDA or GGA frameworks predict
metallic behavior.19-26 To circumvent this problem within
the DFT framework, the use of hybrid functionals, in
particular the Heyd-Scuseria-Ernzerhof (HSE06) hybrid27

has been recently reported for both fully reduced bulk
Ce2O3,23,28 and partially reduced CeO2 (111) surfaces.29

Alternatively, a much less demanding computational ap-
proach makes use of a Hubbard-like term to account for the
strong on-site Coulomb interactions. Indeed, the choice of
U is a delicate point as the physical idea behind the method
is to improve the electron correlation description of an
electron pair in a given orbital, and it is clear that the
optimum U value for LDA and GGA can be different. Also,
the U parameter has to be large enough to properly localize
the 4f electron of Ce3+, but without introducing undesired
artifacts, such as overestimated band-gaps, and finally, as
recently suggested by Castleton et al.,25 the U value might
be different for different properties under study. This latter
aspect is not of minor importance as, for instance, the U
value that better gives the lattice parameters must not
necessarily provide the best energies or band gaps. Finally,
one has to mention the possibility of using a U value
determined in a self-consistent way: Ueff ) 5.30 and 4.50
eV for LDA and GGA, respectively.30,31 However, there is
no guarantee that a self-consistent U will systematically
improve calculated results. In this context, it is also worth
mentioning that a recent work on lanthanide oxides using a
many-body perturbation theory in the GW@LDA+U ap-
proach exhibits only a weak dependence on U in a physically
meaningful range of U values.32

In spite of the empirical choice of the U parameter,21,22

the DFT+U approach has been shown to be an effective,
widely used, theoretical tool in the study of structure and
reactivity of ceria surfaces. However, for accurate energies
and properties, an approach without external semiempirical
input appears to be preferable. For instance, let us consider
the case of CeO2 fluorite structure for which the experimental
value is a0 ≈ 5.41 Å (5.406 Å33 or 5.411 Å34). The LDA+U
(Ueff ) 5.30 eV) value is a0 ) 5.40 Å, in good agreement

with the experiment, while GGA (PBE+U, Ueff ) 4.5 eV)23

moderately overestimates it: a0 ) 5.49 Å. This 1.3% error
of the GGA represents a 4.5% increase in the equilibrium
volume and it has been shown to be critical in the determi-
nation of the charge state of gold atoms deposited on CeO2

(111) surfaces.35-37 In its turn, a very accurate a0 value
results from hybrid DFT calculations: 5.39 and 5.40 Å from
plane-wave calculations with the PBE0 and HSE hybrid
functionals, respectively,23 or 5.41 Å from calculations using
a Gaussian-Type Orbitals (GTO) basis set and the HSE
functional.28

The performance of both the DFT+U and the hybrid DFT
approaches to describe the electronic properties of ceria has
been analyzed in a series of papers. For instance, Hay et
al.28 compared the suitability of LDA, GGA and meta-GGA
DFT functionals with HSE06 hybrid calculations using a
GTO basis set. Furthermore, Da Silva et al.23 compared
PBE0 and HSE functionals using a plane wave basis set,
and more recently, Kullgren et al.38 have reported on the
performance of B3LYP calculations. In the latter work, it
was shown for instance that B3LYP performs slightly better
than PBE0 for the electronic properties but slightly worse
for the structural properties.

The work reported so far on the performance of the DFT
functionals to describe the electronic properties of ceria
makes it clear that hybrid functionals are better suited than
DFT+U techniques to correctly render the structural and
electronic properties of reduced ceria-based systems. Un-
fortunately, periodic hybrid DFT calculations face a number
of computational problems that make them computationally
demanding. Briefly, if we consider the plane-wave and GTO
implementations, we find that energy calculations are reason-
ably fast when using GTO but geometry optimization
becomes slow because the calculation of energy gradients
in a GTO basis set becomes, generally speaking, the limiting
step regardless the functional used. The choice of the basis
set is also a key question especially for the 4f shell. In
contrast, geometry optimizations are in general much more
efficient when using a plane-wave basis set, but here the
limiting step is the calculation of the energy with the hybrid
functional due to the difficulty to estimate the nonlocal Fock
exchange contribution. Finally, one must realize that hybrid
DFT is sensitive to an additional factor because the amount
of Fock exchange included in the potential is also an external
input which largely affects the final description.39,40

Despite the recent efforts devoted to elucidate the proper-
ties of reduced ceria samples, and the ability of hybrid
functionals to describe them, the body of literature about
the subject still is scarce. In particular, most of the work
has mainly been focused on structural and electronic aspects,
while the energetic aspects, which are of major interest in
chemistry, had not been in general considered. Moreover, a
complete analysis of the dependence of the 4f band splitting,
as well as the different band-gaps, cell parameters, and heats
of formation on the amount of the exact exchange has not
been yet reported. Indeed, as reported by Moreira et al. in
their work on NiO,40 the fraction of Fock exchange
introduced in the hybrid functional does alter not only the
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band-gaps but also the lattice constant, and the elastic
constants and bulk modulus.

In view of the importance of this class of material, and
the lack of information about the suitability of hybrid
functionals to render a specific property, we have carried
out in the present work a systematic analysis of the
performance of five functionals commonly used in the
literature, and that are implemented in the CRYSTAL06
code, namely the Perdew-Burke-Ernzerhof PBE0, the half
and half HH, the modified half and half HHLYP, the widely
used in computational chemistry B3LYP, and the recently
proposed B1-WC functional. Using a purely ab initio periodic
framework and treating oxidized and reduced ceria on an
equal footing, we focus on the response of these functionals
on three different sets of data: (i) structure: lattice parameters
for CeO2 and Ce2O3; (ii) band gaps: 2p-4f-5d in the case of
CeO2 and 4f-5d in the case of Ce2O3; and (iii) reaction
energies involved in the CeO2/Ce2O3 redox process. More-
over, bearing in mind the aforementioned sensitivity of the
hybrid functionals to the fraction of exchange included, a
systematic analysis of the behavior of the PBE0, B3LYP,
and B1-WC functionals that incorporate different amounts
of exact Fock exchange is also reported.

2. Computational Details

Two different structures were studied in this work, the CeO2

fluorite crystal (Fm3mj ) and the Ce2O3 A-type crystal (P3mj1).
Their unit cells are shown in Figure 1. All of the calculations
were performed using a developing version of the CRYS-
TAL06 code,41 where the Fock (and Kohn-Sham, KS)
equations42 for the valence electron density are solved in a
periodic framework. In this framework, the crystalline
orbitals are represented as linear combinations of Bloch
functions (BFs) and are evaluated over a regular three-
dimensional mesh in the reciprocal space. Each BF is built
from atom-centered atomic orbitals (AOs) that are contrac-
tions (linear combinations with constant coefficients) of
Gaussian-type functions (GTFs), each GTF being the product
of a Gaussian times a real solid spherical harmonic.

Five hybrid DFT functionals were used in this work:
PBE0,43 HH, HHLYP,44 B3LYP,45-47 and the recently
proposed B1-WC functional.48 Self-consistent-field (SCF)
closed shell calculations were performed to obtain the ground
electronic state in the case of CeO2, while in the case of
Ce2O3 spin-polarized calculations were performed in order

to discriminate between the ferromagnetic and antiferromag-
netic states of this oxide. In the latter, multiple solutions of
the SCF take place depending on the accommodation of the
unpaired electrons over the Ce 4f AOs. A recent implemen-
tation in the CRYSTAL program allows us to favor the
convergence into a given symmetry adapted electronic
configuration through a proper definition of the initial guess.
In Ce2O3 calculations, the most stable configuration for the
4f electrons in Ce has been chosen. This is an antiferromag-
netic state where both R and � electrons occupy a mixing
between (2z2 -3x2 -3y2 )z and (x2 - 3y2)x components of
the 4f AOs of Ce.

The PBE0 is a combination of the GGA exchange-
correlation functional PBE49 (EXC

PBE) and the exact
Hartree-Fock (HF, EX

HF) exchange following the expression:

The HH, HHLYP, B3LYP, and B1-WC follow the
expression:

where EX
LDA is the exchange contribution by using the

Dirac-Slater functional50 and EC
VWN is the correlation

energy coming from the use of the Volsko-Wilk-Nusair
parametrization of the Ceperley-Alder free electron gas
correlation results.51 In the case of HH, HHLYP, and B3LYP
functional, EX

BECKE/WC stands for the Becke’s exchange,52

and EC
LYP/PBE represents the Lee-Yang-Parr correlation

energy.46 In the case of the B1-WC functional, EX
BECKE/WC

stands for the Wu-Cohen53 GGA exchange, and EC
LYP/PBE

is the correlation energy contribution from the PBE.49

Concerning the three weight parameters, A ) 0.2, B ) 0.9,
and C ) 0.81 for B3LYP. These parameters are set to A )
0.5 and C ) 1.0 when we deal with the HH (B ) 0.0) and
HHLYP (B ) 1.0) functional. In the case of using the B1-
WC functional, A ) 0.16 and B ) C ) 1.0.

Although calculations using the HSE06 functional are not
performed in this work, we will also briefly outline it since
is closely related to the PBE0 and largely used in the
comparisons reported here. In the HSE functional, the spatial
decay of the HF exchange interaction is accelerated by
partitioning the Coulomb potential for exchange into short-
range (SR) and long-range (LR) components:27

where the mixing coefficient a is set to 0.25, and the
screening factor ω defines the separation range. This enables
a substantial lowering of the computational cost for calcula-
tions in extended systems. Note that in the limit ω ) 0, HSE
reduces to the hybrid functional PBE0, and when ω f ∞,
HSE becomes identical with PBE.

Inner electrons of Ce atom were replaced by an effective
core potential developed by the Stuttgart-Dresden
group.54 The Ce electrons explicitly treated were the
4s24p64d105s25p64f16s25d1, with a (10sp7d8f)/[4sp2d3f] basis

Figure 1. Left: Fluorite type structure of CeO2 (face-centered
cubic, Fm3mj ). Right: the sesquioxide A-type structure of
Ce2O3 (hexagonal, P3mj 1). Red and white balls indicate O
and Ce atoms, respectively.
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set optimized to properly describe oxides where the metal
features III and IV oxidation states. The corresponding
exponents and coefficients can be found in ref 55. For O an
all-electron basis set proposed in ref 56 for ionic crystals
was adopted. The two most external sp and d exponents have
been reoptimized for cerium oxide, their resulting values
being 0.4798717, 0.1801227, and 0.2991812 bohr-2,
respectively.

Other technical parameters were set as follow. With the
aim of obtaining an enough level of accuracy when evaluat-
ing the Coulomb and exchange series the five thresholds had
the values of 10-8, 10-8, 10-8, 10-8, and 10-20. The
Brillouin zone was sampled using a 6 × 6 × 6 Monkhorst-
Pack57 grid, corresponding to 16 reciprocal space irreducible
points at which the KS matrix was diagonalized. The SCF
calculations were considered to be converged when the
energy changes between the iterations were smaller than 10-8

hartree. The exchange-correlation contribution to the energy
was evaluated by numerical integration over the cell vol-
ume.58 Radial and angular points of the atomic grid were
generated through Gauss-Legendre and Lebdev quadrature
schemes. A grid pruning was adopted, as discussed in ref
58. In the present study, a (75, 974)p grid was used, such
that it contains 75 radial points and a variable number of
angular points, with a maximum of 974 on the Lebedev
surface in the most accurate integration region. Full opti-
mization (lattice constants and atomic positions) of CeO2

and Ce2O3 were carried out using a convergence criterion
of 3 × 10-4 hartree/bohr for the root-mean-square values
of forces and 1.2 × 10-3 bohr in the root-mean-square values
of atomic displacements. The Fermi level in the DOS plots
is taken directly from CRYSTAL, and estimated in ac-
cordance with the zero-th level of the electrostatic energy
in the multipolar Ewald-type expansion.59

3. Results and Discussion

3.1. Crystal Structure. By and large, DFT methods are
known to predict fairly well the crystal structure of a wide
variety of inorganic compounds. In general, the deviations
of lattice parameters, both positive and negative, are in the
range 2-3%,60 hence it seems reasonable to adopt a value
of 2.5% as accuracy criterion. Table 1 displays the computed
lattice parameters for CeO2 and Ce2O3 for each one of the
functionals tested in this work. For comparison, some values
chosen from the recent literature are also shown in this Table.
In general, all computed values are found to correctly

reproduce the experimental lattice parameters for both oxides,
fulfilling the proposed accuracy criterion. The a0 parameter
for CeO2 seems to be only modestly influenced by the
exchange-correlation functional chosen. The largest errors
correspond to the values computed with the B3LYP func-
tional, the HH functional, or with the GGA+U approach
(∼1.3%, 0.06-0.07 Å), although they are well below the
required accuracy criterion. Alternatively, the smallest errors
are found for the HHLYP, HSE and PBE0 functionals (less
than 0.4%).

The a0 and c0 lattice parameters for Ce2O3 show a similar
behavior: the computed values are quite insensitive to the
functional chosen, with all calculated values within the
proposed error bar. The HH functional is, again, the one with
the largest errors with respect to the experimental values,
underestimating by 1.5% and 1.9% the lattice parameters. It
is worth pointing out that, except for the HSE functional,23

the percent errors on the computed c0 lattice parameter are
larger than the errors found for the calculated a0 values. As
in the case of the lattice parameter of CeO2, the smallest
average errors are found for the HHLYP, HSE, and PBE0
functionals (less than 0.6% on average). Finally, it is worth
mentioning here that the computed values with the PBE0
functional are practically the same, no matter the kind of
basis set used: plane waves23 or localized atomic orbitals
(this work).

3.2. Electronic Structure. 3.2.1. Electronic Structure
of CeO2. In CeO2, the valence and conduction band are
mainly composed by O 2p and Ce 5d states, respectively,
while the Ce 4f states lie within the gap. All valence Ce
states, including the 4f states, are empty, and the system is
a wide gap insulator (see Figure 2, top). All local, semi local,
and hybrid functionals produce an insulating solution, in
agreement with the above picture of the CeO2 electronic
structure. Besides this qualitative agreement, the theoretical
description of the electronic structure of CeO2 is quite
sensitive to the approach used, as can be deduced from the
different band gaps reported in Table 2. As expected, both
LDA and PBE underestimate the main band gap (O 2p- Ce
5d).23 However, it is interesting to note that all DFT+U
approaches reported in the literature also underestimate this
band gap, and the results are not much sensitive to the
specific value of the U parameter.22,23 This can be easily
explained since the U parameter acts only on the Ce 4f states,
thus not modifying the relative positions of the valence and
conduction bands, that have predominantly O 2p and Ce 5d

Table 1. Calculated and Experimental Lattice Parameters (in Å) for CeO2 and Ce2O3

method

CeO2 Ce2O3

refsa0 error a0 error c0 error

B3LYP 5.47 0.06 3.89 0.00 6.17 0.11
HH 5.34 -0.07 3.83 -0.06 5.93 -0.13
HHLYP 5.42 0.01 3.88 -0.01 6.14 0.08
PBE0 5.40 -0.01 3.86 -0.03 6.04 -0.02
B1-WC 5.38 -0.03 3.84 -0.05 5.93 -0.13
GGA(PBE)+U(U ) 4.5) 3.87 -0.02 5.93 -0.13 24
GGA(PW91)+U(U ) 3.0) 5.48 0.07 3.92 0.03 22
HSE 5.41 0.00 3.87 -0.02 6.06 0.00 23
PBE0 5.39 -0.02 3.87 -0.02 6.07 0.01 23
Experiment 5.41 3.89 6.06 33,34
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character. Alternatively, all hybrid functionals are found to
produce larger values of the O 2p - Ce 5d gap. Particularly,
the HH and HHLYP functionals result in an overly large
error (∼3-4 eV) with respect to the experimental value61

for this band gap. This behavior might be ascribed to an
excessive weight (50%) of the exact exchange in these two
functionals. Among the different hybrid possibilities tested
in this work, the B1-WC functional is the one that produces
the smallest O 2p-Ce 5d gap, 7.48 eV, in close agreement
with XPS and BIS experimental data,62 which indicate a
conduction band about 3 eV wide centered at about 7.5 eV.
The smaller gap found for B1-WC agrees with the fact that
it is the one incorporating the lowest HF exchange fraction.
However, it is worth noting that although the HF fraction in
B1-WC is lower than that of the screened HSE hybrid, the
latter gives a gap even smaller (∼7 eV), in excellent
agreement with the experimental data.

The results found for the O 2p-Ce 4f gap closely follow
the behavior previously discussed for the main band gap.
The HH and HHLYP functionals produce band gaps that
are too large, mainly because the excessive weight of the
exact exchange pushes upward all virtual levels. Among
the remaining results, the B1-WC hybrid functional (with
the lowest HF fraction) produces the lowest band gap, 3.18
eV, again in close agreement with available experimental
data,62 and with the HSE values (3.3-3.5 eV), which also
fall in the experimental range. The use of the PBE0 approach
results in a band gap slightly larger that the experimental
data, a behavior already reported and discussed.23

3.2.2. Electronic Structure of Ce2O3. In contrast to CeO2,
in Ce2O3 one electron per Ce atom populates the Ce band,
resulting in a narrow 4f occupied band that develops in the
O 2p-Ce 5d gap, some 2.4 eV below the conduction band18

that is formed mainly by a mixing of Ce 5d and Ce 4f states
(see Figure 2, bottom). Overall, the effect of the inclusion
of the exact exchange in the hybrid functionals is similar to
those found in CeO2. The HH and HHLYP functionals result
in too large band gaps, with all virtual levels too high in
energy. With respect to the remaining hybrid functionals used
in this paper, again the B1-WC produces the best result for
the Ce 4f-Ce 5d gap (2.78 eV). This value agrees reasonably
with the experimental value available (2.40 eV) and is
slightly higher that the one estimated using the HSE
functional (2.50 eV), which actually is the best to reproduce
the experiment. In any case, except for the aforementioned
cases of the HH and HHLYP functionals, the computed
electronic structure of Ce2O3 is in semiquantitative agreement
with the experimental information. Finally, if we compare
the PBE0 band gaps obtained either with plane-wave or GTO
basis sets noticeable differences might be seen, indicating
that the electronic structure is more implementation depend-
ent than the lattice parameters.

3.3. Reaction Energies. Given the active and crucial role
played by CeO2 and Ce2O3 oxides in many heterogeneous
chemical reactions, generally traced back to their oxygen
storage capacity, we have also investigated the performance
of different hybrid functionals on the computation of some
reaction energies involving cerium oxides. The suitability
to predict the relevant thermodynamic properties has been
investigated by computing the energetics of two reduction
reactions involving CeO2 and Ce2O3, namely:

Figure 2. Total density of states (DOS) for CeO2 (top) and
Ce2O3 (bottom).

Table 2. Calculated and Experimental Band Gaps (in eV)
for CeO2

method O 2p-Ce 5d O 2p-Ce 4f Ce 4f -Ce 5d

B3LYP 8.16 3.70 3.54
HH 10.64 7.50 1.91
HHLYP 10.75 7.18 2.51
PBE0 8.52 4.30 3.10
B1-WC 7.48 3.18 3.09
LDA23 5.61 2.0 2.25
PBE23 5.64 2.0 2.5
PBE023 7.93 4.5 2.25
HSE23 6.96 3.5 2.25
HSE28 7.0 3.3 -
DFT+U22,23 ∼ 5 - -
Experiment61,62,28 ∼ 6-8 2.6-3.9

Table 3. Calculated and Experimental Band Gaps (in eV)
for Ce2O3

method O 2p-Ce 5d O 2p-Ce 4f Ce 4f -Ce 5d

B3LYP 6.61 2.17 4.08
HH 9.4 1.83 7.19
HHLYP 9.78 1.13 8.25
PBE0 7.08 2.34 4.54
B1-WC 5.94 3.00 2.78
PBE023 6.75 3.25 3.50
HSE23 5.75 3.25 2.50
experiment18 2.40

2CeO2(s) f Ce2O3(s) + 1/2O2(g) (3)
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The reaction enthalpies have been calculated as

where E(X) represents the computed total energies of X )
CeO2 (solid), Ce2O3 (solid), O2(gas), CO2 (gas), and CO (gas)
per formula unit. The experimental values have been obtained
from the corresponding heats of formation of reactants and
products.63 The computed reduction energies, along with the
experimental values are reported in Table 4. Zero-point
vibrational energy contributions have not been included. A
major problem that we encounter which makes it hard to
extract any conclusions with respect to the reliability of the
different functionals is that the experimental heats of
formation of cerium oxides are not easy to measure. This
problem is related to difficulties in the preparation of defect-
free oxides in a well-defined oxidation state. Comparing the
most recent reported data for reaction 3, shown in Table 4,
with other values available in the recent literature (3.57 eV),2

the uncertainty in the experimental value might be estimated
to be ∼0.5 eV. With this caution in mind we can, anyhow,
comment on the values computed in this work with different
hybrid functionals. The estimated reaction energies for
reaction 3 show a dispersion (standard deviation) of 0.67
eV, with an average value of 3.92 eV, in close agreement
with the last reported experimental value. Excluding the
HHLYP value, that shows the larger absolute error with
respect the experimental value, the average reaction energy
increases to 4.12 eV (slightly larger than the experiment)
and the dispersion is reduced to 0.50 eV, similar to the
experimental error bar. Thus, regarding the computed reac-
tion energies for reaction 3 we can say that all theoretical
values fit within the experimental error bar, being the HH
and PBE0 functional the ones that produce the data with the
smaller deviation with respect to the currently accepted
experimental reaction enthalpy. However, we can see once
again a significant difference between the PBE0 estimated
values obtained using plane-waves or GTO as basis set.

In the case of reaction 4, we can assume a similar error
bar for the experimental value reported. Similar comments

can be made with respect to the computed theoretical values.
Excluding again the value obtained with the HHLYP
functional (that predicts an exothermic reaction), the calcu-
lated average reaction energy will be 0.80 eV, in close
agreement with the experimental reaction enthalpy of 1.02
eV. The standard deviation of the theoretical values is, in
this case, only 0.36 eV, well within the experimental error
bar. In this case, the HH and B1-WC functionals produce
the theoretical values in better agreement with the experi-
mental data.

In summary, we can state that, excluding the HHLYP
functional, all tested functionals produce values for the
reaction energy that are within the experimental error bar of
0.5 eV.

3.4. Effect of the Fock Exchange. In addition, to evaluate
the performance of different hybrid functionals in the
description of the geometric and electronic structure of CeO2

and Ce2O3, and in selected reaction energies involving ceria,
we have also investigated to what extent the amount of HF
exchange affects the three properties that we are looking at
in this work: the cell parameters, the band gaps, and the
reaction energies involved in the Ce3+ T Ce4+ redox
process. Taking into account the results we have obtained
so far, we have limited this analysis to the B3LYP, PBE0,
and B1-WC functionals.

3.4.1. Cell Parameters. Figure 3 shows the influence of
the amount of exact exchange in the computed values of the
lattice parameters of CeO2 and Ce2O3. Starting with the a0

parameter of CeO2, the computed lattice parameter decreases
in all cases on increasing the percentage of HF exchange.
This first result is in contrast with that reported on NiO,
where the lattice constant was found to increase when the
amount of exact exchange was raised.40 For the PBE0
functional, the value computed with the standard amount of
exact exchange (25%) is already very close to the experi-
mental value, while for the B3LYP functional, the experi-
mental lattice parameter is only reached at ∼55% of exact
exchange and for the B1-WC functional the most accurate
value is obtained at 0% of exact exchange.

With respect to the lattice parameters of Ce2O3, we find
that the a0 parameter is quite insensitive to the amount of
exact exchange in the three functionals tested. Only for the
B3LYP functional, the experimental value of a0 is reached
(for 10-20% of HF exchange), while for PBE0 and B1-
WC the computed value is always below the experimental
one. The a0 lattice parameter remains almost invariant with
the B1-WC functional: the absolute change is less that 0.01
Å in the tested range (10-50% of HF exchange). The value
of c0 is more sensitive than that of a0 to the fraction of HF
exchange included in the hybrid functional. For the B3LYP
and PBE0 functionals, the computed value decreases on
increasing the participation of HF exchange, while for the
B1-WC functional c0 increases slightly. In the case of the
PBE0 functional, the value closest to the experimental data
is reached at about 10% of exact exchange, even though,
with the standard value of HF exchange the error is only
-0.35%, which is quite accurate and keeps the advantages
of using a standard definition of the functional. In the case
of the B3LYP functional, the experimental value of c0 is

2 CeO2(s) + CO(g) f Ce2O3(s) + CO2(g) (4)

∆H1 ) E(Ce2O3) + 1/2 E(O2) - 2 E(CeO2) (5)

∆H2 ) E(Ce2O3) + E(CO2) - 2E(CeO2) - E(CO) (6)

Table 4. Computed and Experimental Reaction Energies
(in eV) for 2 CeO2 f Ce2O3 + 1/2 O2 and 2 CeO2 + CO
f Ce2O3 + CO2

2 CeO2 f Ce2O3 +
1/2 O2

CeO2 + CO f Ce2O3 +
CO2

method ∆H error ∆H error

B3LYP 3.52 -0.47 0.44 -0.58
HH 4.37 0.38 0.93 -0.09
HHLYP 2.88 -1.11 -0.16 -1.18
PBE0 3.66 -0.33 0.40 -0.62
B1-WC 4.45 0.46 1.05 0.03
PBE023 3.14 -0.85
HSE23 3.16 -0.83
LDA+U23 3.04 -0.95
PBE+U23 2.29 -1.70
experiment63 3.99 1.02
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not reached for any amount of exact exchange, being only
approximated when the amount of HF exchange if increased
up to 90%. The variation of c0 with the percentage of HF
exchange in the B1-WC functional is (as it did happened
with a0) quite small. The computed lattice parameter
increases only slightly in the tested range of exact exchange,
the total increment being less than 0.05 Å.

In summary, the analysis of the variations in the cell
structure suggests that overall the PBE0 at its original
formulation is the more appropriate choice to simultaneously
render the three parameters. Although in the case of the
sesquioxide the B3LYP answer for a0 is very good, it needs
to incorporate a large amount of Fock exchange to get closer
to the experimental c0 value. In the general comparison the
B1-WC functional seems to perform satisfactorily with small
variations.

3.4.2. Band Gaps. The evolution of the computed band
gaps with the amount of Fock exchange included in the
functional shows, for the three functionals tested, a marked

linear behavior (see Figure 4). In all cases, and in agreement
with the well-known trend,40,64 the computed band gaps
increase with the amount of exact exchange, the increment
being practically linear, showing similar slopes, with many
of the fitting lines overlapping. A direct consequence of this
behavior is that similar values of the band gaps are computed
for similar contributions of the Fock exchange, regardless
of the functional utilized. The O 2p-Ce 4f experimental band
gap of CeO2 is, thus, most approximated in the 10-15%
range of exact exchange. On the contrary, the computed O
2p-Ce 5d band gap of CeO2 is always larger than the
experimental value of 6.0 eV,61 but it approaches the
∼7.0-7.5 eV value62 obtained from XPS and BIS data, for
about 10% Fock exchange. In the case of Ce2O3, the
experimental value is, again, more closely approached in the
10-15% range of exact exchange and the computed value
increases linearly with increasing contribution of the HF
exchange in the functional. It is particularly striking again

Figure 3. Dependency of the computed lattice parameters
for CeO2 (top) and Ce2O3 (a0, middle and c0, bottom) on the
amount of exact exchange in the B3LYP, PBE0, and B1-WC
functionals. The triangles denote the standard HF percent for
each functional. The horizontal lines show the experimental
value (full) and the acceptable error bars (dashed).

Figure 4. Dependency of the computed band gaps for CeO2

(top and middle) and Ce2O3 (bottom) on the percentage of
exact exchange in the B3LYP, PBE0, and B1-WC functionals.
Refer to Figure 3 for labeling.
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that, regardless of the functional used, all experimental band
gaps are nearly approximated in a similar range of HF
exchange, around 10-15%. This can be interpreted in the
sense that the different band gaps (the relative position of
the bands) are mostly dependent on the exchange functional
and basically independent of the correlation functional
utilized.

Summarizing again, when we analyze the plots for the
three band gaps reported in Figure 4, the B1-WC functional
is the one that gives a better result. Only this functional at
its original formulation is able to reproduce band gaps within
the (0.5 eV error bar, even though the O 2p-Ce 5d gap
still is overestimated.

3.4.3. Energetics. The dependence on the computed
reduction energies for reactions 3 and 4 on the percentage
of HF exchange included in the functional is shown in Figure
5. In both cases, the estimated reaction energies are decreased
on increasing the contribution of exact exchange and show
a similar dependency as demonstrated by the curve fitted to
the computed reaction energies. It is always possible to adjust
the contribution of HF exchange to reproduce the experi-
mental reaction energy. For the reduction of CeO2 with CO,
reaction 4, amounts of HF exchange of 10-15% seem to
give the best agreement with the experimental reaction
energy. For reaction 3, however, the dispersion of the
computed reaction energy is larger and, as result, the
percentage of HF exchange required to for the experimental

value also spawns a larger range: ∼10% for B3LYP, ∼18%
for PBE0, and ∼28% for the B1-WC functional. At its
original formulation, the B1-WC functional is once again
the best well-behaved functional as it is very accurate for
reaction 4 and within the bar error in the case of reaction 3.

A complete view of the final ranges of possible HF
fractions for which the different calculated values fall within
the error bars might be obtained inspecting Table 5. As can
be seen, the fraction for a given functional giving results
within the error bars for lattice constants, band gaps, and
energetics may differ, however, the three hybrids with the
same nominal fraction of roughly 10-16% give results in
fairly good agreement with the experimental data.

4. Conclusions

In this work, we report an analysis of the performance of
five exchange-correlation functionals implemented in the
CRYSTAL06 code to describe three properties of ceria that
include crystal structure, band gaps, and reaction energies
involved in the Ce3+ T Ce4+ redox process. Concerning
the cell parameters, all five functionals give values that are
within the 2.5% error, usually found for a vast majority of
inorganic crystals, although the PBE0 hybrid functional is
found to be the most accurate, giving parameters also very
close to those estimated using the HSE screened functional.
In general, when the fraction of HF exchange increases, a
moderate lowering in the cell parameters is observed. Things
change when we look at the band gaps of both cerium
dioxide and sesquioxide. First the HH and HHLYP func-
tionals lead to band gaps too large as they incorporate too
much HF exchange that pushes the empty states too high. It
is shown that for any functional used, the gaps are overes-
timated, and the agreement improves lowering the amount
of the HF exchange. In this case, the overall best answer is
provided by the B1-WC functional, which actually, among
the functionals here considered, incorporates the lowest
amount of HF exchange in its original formulation. The
suitability to render the reaction energies normally involved
in the rich ceria chemistry has been evaluated estimating the
energetics associated to the CeO2f Ce2O3 reduction process.
For the two reactions considered, the reaction energies are
in general underestimated, and lower when the amount of
HF exchange increases, which is in contrast with the gaps
behavior. Overall, the B1-WC functional is once again the
most well-behaved functional to reproduce the correct
energetics.

Figure 5. Dependency of the computed reaction energies
on the percentage of exact exchange in the B3LYP, PBE0,
and B1-WC functionals. Refer to Figure 3 for labeling.

Table 5. Summary of the Effect of the Fock Exchange
Contribution on the Structure, Band Gaps and Reaction
Energiesa

property
error
limit B3LYP(20) PBE0(25) B1WC(16)

structure (cell parameters) 2.5% [0-100] [0-100] [0-100]
band-gaps CeO2 0.5 eV [10-18] [8-16] [8-16]
band-gaps Ce2O3 0.5 eV [4-12] [8-16] [10-16]
energy for reaction 3 0.5 eV [8-20] [8-32] [16-50]
energy for reaction 4 0.5 eV [2-18] [2-22] [7-30]
the whole set [10-12] [8-16] 16

a Values that fulfill the accuracy criteria are in brackets, and the
standard fractions between parentheses.
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In summary, the present work shows that as far as the
structure is concerned, any of the functionals that we have
considered, in the original formulation, are accurate enough,
giving parameters within the usual error bar. In general, the
cell parameters are found to depend only moderately on the
HF exchange fraction. However, caution should be taken in
the case that the structure might favor a given state or
property, in which case the PBE0 functional should be the
choice. In the case of band gaps and reaction energies, a
stronger dependency on the amount of HF exchange is
observed. Its lowering improves band gaps and reaction
energies with both PBE0 and B3LYP functional. Otherwise,
at its standard formulation, the B1-WC functional (the one
with the smallest fraction of HF exchange), seems to be the
best choice as it provides good band gaps and reaction
energies, and very reasonable crystal parameters.
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Abstract: In the past couple of decades, the massive computational power provided by the
most modern supercomputers has resulted in simulation of higher-order computational chemistry
methods, previously considered intractable. As the system sizes continue to increase, the
computational chemistry domain continues to escalate this trend using parallel computing with
programming models such as Message Passing Interface (MPI) and Partitioned Global Address
Space (PGAS) programming models such as Global Arrays. The ever increasing scale of these
supercomputers comes at a cost of reduced Mean Time Between Failures (MTBF), currently
on the order of days and projected to be on the order of hours for upcoming extreme scale
systems. While traditional disk-based check pointing methods are ubiquitous for storing
intermediate solutions, they suffer from high overhead of writing and recovering from checkpoints.
In practice, checkpointing itself often brings the system down. Clearly, methods beyond
checkpointing are imperative to handling the aggravating issue of reducing MTBF. In this paper,
we address this challenge by designing and implementing an efficient fault tolerant version of
the Coupled Cluster (CC) method with NWChem, using in-memory data redundancy. We present
the challenges associated with our design, including an efficient data storage model, maintenance
of at least one consistent data copy, and the recovery process. Our performance evaluation
without faults shows that the current design exhibits a small overhead. In the presence of a
simulated fault, the proposed design incurs negligible overhead in comparison to the state of
the art implementation without faults.

1. Introduction

In the past couple of decades, computational chemistry has
developed to the point where it has become a significant tool
in solving real world problems. The development has been
supported by a tremendous growth in computational power
provided by the most modern supercomputers. While this
growth initially was delivered by increasing single processor
capability, the past two decades have observed a significant
part of this growth through the development of parallel
computing systems. This development has recently been

accelerated by the arrival of multicore and GPU-based
systems. Currently, the extreme end of this development is
embodied in the Jaguar machine,1 which employs 224 256
cores, delivering at most 2.3 × 1015 floating point operations
per second.2 Presently, researchers are looking into the
possibility of 1000 times more powerful supercomputers.3

At the same time, there has been a development toward
parallel implementations of computational chemistry ap-
plications to take advantage of these supercomputers. A
number of parallel quantum chemistry applications have
becomeavailable, includingNWChem,4GAMESS,5GAMESS-
UK,6 MOLPRO,7 MOLCAS,8 Q-Chem,9 PQS,10 MPQC,11

ADF,12 Dalton,13 FreeON,14 and COLUMBUS,15 to name
a few. The different applications and different methods
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implemented by these applications show different charac-
teristics in the parallelism they can exploit. Ongoing devel-
opments continue to improve these capabilities, and chem-
istry continues to be at the forefront of parallel applications,
as recently demonstrated by Apra et al.16

However, the increasing scale of these supercomputers has
reduced the Mean Time Between Failures (MTBF) sharply.
The current generation of supercomputers exhibits an MTBF
of 6 h,17 seriously limiting the overall system usage of these
supercomputers. To deal with such problems, disk-based
checkpoint/restart fault recovery strategies have usually been
implemented. In this approach, the state of an application is
written to disk at regular intervals. After a fault occurs, the
last valid state is restored and the calculation continues from
that point. This mechanism can be provided by the applica-
tion itself writing restart files at particular points during a
calculation or by the operating system saving the state of
the calculation in an application-transparent manner. The
problem with the checkpoint/restart approach is that the I/O
overhead it introduces is significant. In fact, it is estimated
that, somewhere between peta- and exa-scale calculations,
the time spent on the overhead of the checkpoint/restart fault
tolerance strategy will exceed the time spent doing useful
computation.18 In addition, quite a few times, the act of
checkpointing itself brings the overall system to a halt.
Clearly, other fault tolerance strategies for efficient recovery
are imperative for computational chemistry methods. This
leads to the following challenges:
• designing fault tolerant methods that allow computational
chemistry codes to proceed correctly in the presence of faults
• ensuring that the overheads introduced are insignificant
These challenges were considered by Nielsen et al.19 to some
extent, but they judged implementing a fault tolerant method
impractical for the lack of fault tolerance support in MPI.
In this paper, we address these challenges by designing a
fault tolerant strategy based on in-memory data redundancy
using Global Arrays (GA).20 GA uses a message passing
layer, but it can use its own TCGMSG21 layer rather than
MPI. Although we have no control over MPI, we can design
a fault tolerant GA/TCGMSG infrastructure as the foundation
for fault tolerant applications. The aim of this approach is
to develop applications that can withstand system failures
while incurring low overheads. While the approach is not
specific to chemistry applications, the impact is related to
algorithm-specific parameters such as data volumes, message
frequencies and sizes, communication/work balance, etc.
Therefore, it is relevant to assess the appropriateness of the
chosen approach to the target applications. To this end, we
have implemented a fault tolerant version of the coupled
cluster perturbative triples. We assess the level of fault
tolerance that can be attained, the extent of the code
modifications needed, as well as the overheads incurred.

The rest of the article is organized as follows. In section
2, we present the background of our work. In section 3, we
present the design of our work. Section 4 presents the
performance evaluation of the fault tolerant coupled cluster
method. In section 5, we present the conclusions and future
directions. We begin with the description of the background.

2. Background

The increasing scale of modern supercomputers has not only
reduced the MTBF, it has also increased the variety of faults
which occur during the execution of the applications. While
disk failures continue to decrease due to the arrival of disk-
less systems (Cray XT5 and IBM Bluegene), processor
failures due to overheating, node failures due to power
tripping, and network failures for high connectivity intercon-
nects are ubiquitous. Some of these failures lead to a
permanent change of the calculation, e.g., a node failure due
to power tripping leads to the permanent loss of the processes
running on that node. These kinds of failures are referred to
as hard failures.

Other failures, such as certain kinds of random memory
bit flips as a result of radiation,17 are transient or intermittent.
They do not occur at a specific time and may not be
reproducible at a later stage. These kinds of failures are
referred to as soft failures. They are also inherently harder
to detect because if such a fault is suspected there is no
general a posteriori test that can reliably establish that such
a failure actually has happened. The only way to reliably
test for such faults is through redundancy, either in hardware,
e.g., extra bits used in Error Correction Code (ECC),22 or
software by redundant execution of instructions and checking
that the results are the same.23

During most extreme scale application executions, com-
binations of these failures are expected to occur. In the
present work, we target only hard failures. Moreover, we
assume that most hard failures will be detected by the runtime
system and result in the affected processes being terminated.
In particular, we assume that in most cases the impact will
be such that all processes on a particular node will be
terminated. Obviously this does not mean that soft failures
are insignificant. However, provided the capability to detect
soft failures is available, it is always possible to render soft
failures into hard failures by terminating the affected
processes.

2.1. Fault Behavior and General Data Fault Resilience.
Given that a fault expresses itself in the termination of one
or more processes, there are generally three different possible
choices. The most commonly supported choice at the moment
is to restart the application on the basis of a checkpoint/
restart mechanism. As mentioned in the Introduction, the
overhead of this approach is high and expected to become
impractical for the scale of calculation currently envisioned.

Another approach is to detect the process failures and
recover by reinstantiating the failed processes. In the case
of processes failing due to hardware becoming unavailable,
e.g., a power supply failing, effectively turning a number of
processors off, the processes would have to be reinstantiated
on additional resources. These resources would have to be
on stand-by for as long as no fault occurs, which is wasteful.
However, more problematic is that upon reinstantiating the
processes they would have to be put in a state that is
consistent with the other processes in the calculation. For
many chemistry applications, this is highly nontrivial, as in
normal circumstances, the state is updated in the course of
the calculation. Hence, the state is a function of the program
and the path its execution has taken through it up to a
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particular point. This path often involves the modification
of many variables that manage the calculation to be executed,
such as I/O, communication, data distributions, etc. The
application relies on most of these variables at a later point
in the calculation. Hardly ever is the relationship between
the values of these variables and the particular phase of the
computation in hand explicitly formulated. Therefore, rec-
reating a process and bringing it to the correct state is at
best hard to achieve.

The remaining approach is to accept the loss of the failed
processes and continue the calculation without them. Obvi-
ously, this leads to a degradation of performance, but as long
as this is roughly proportional to the fraction of processes
lost, this is acceptable. In most cases, the loss of performance
has less of an impact than the interruption caused by
checkpoint/restarting or forcing an application shutdown. In
extreme cases where the loss of performance is severe, this
essentially points to a serious instability of the machine, and
continued execution is not recommended anyway.

Considering the implications of the various approaches,
we consider the last option of continued execution in the
degraded mode the most promising option. In designing such
an approach, an important question is how to handle the
impact a fault has on the data in the application. Clearly, as
a fault leads to the loss of processes, the data those processes
hold become inaccessible to the application. Broadly speak-
ing, there are two possible ways to address this issue
(disregarding keeping copies on disk, which would ef-
fectively be equivalent to checkpoint/restart).

One way to address this is to replace the lost data with
“reasonable” guesses for the lost data. If the guesses are close
enough and the amount of data lost small enough, one could
expect the calculation to continue almost as normal with only
a slight perturbation. This approach could work for optimiza-
tion algorithms where the end-point is specified in terms of
certain conditions being met. In this case, a small upset along
the way might not have significant consequences. The main
flaw in this idea is however that many data structures have
to satisfy specific conditions. For example, molecular orbitals
have to be orthonormal, the trace of the density matrix has
to equal the number of electrons, wave functions have to be
normalized, etc. Just replacing a patch of the data with some
guess is more than likely going to violate these conditions.
Explicitly re-establishing these conditions is often expensive
and involves a global response; think for example of
reorthonormalizing the molecular orbitals. The alternative
would be to write the algorithm in such a way that it
intrinsically strives to satisfy these conditions; i.e., meeting
these conditions to a certain degree becomes part of the
convergence criterion. In the abstract, it is not clear what
the computational cost implications of such an approach are,
but it is clear that this would require nontrivial modifications
of all algorithms to which it is applied. Even then, this
approach could only be used for optimization algorithms. It
offers no way forward, for example, for algorithms like the
MP2 energy evaluation, which is a single step method. In
those cases, any perturbed input data will lead to a perturbed
answer.

The other approach is to rely on redundant data of some
kind. Obviously, disk-based data redundancy is out of
question due to the I/O overheads, but in-memory redun-
dancy is an option. In particular, in quantum chemistry where
the computational complexity is always of a higher order
than the data storage requirements (only in the large systems
limit for linear scaling methods both orders become the
same), it is possible to duplicate the critical data. The
assumption is that the choice of the number of processors is
motivated by the amount of work to be done rather than the
amount of memory needed. This is certainly true for
correlated quantum chemistry methods. The main cost of this
approach will be in the extra communication required to
maintain the duplicate copies. Provided the granularity of
the work is high enough, this should not be a major problem.

In this paper, we describe how fault tolerance can be
achieved using in-memory data redundancy in the context
of degraded mode continued execution.

2.2. Global Address Space Programming Models and
Global Arrays. As will become clear in the next section, a
critical capability for our fault tolerance approach is that other
processes can continue from the point where some process
failed. Central to this capability is access to the data required
to do so. Although in principle this access can be arranged
in a number of ways and environments, in practice it is
particularly facilitated by the Partitioned Global Address
Space paradigm (PGAS). In this paradigm, physically
distributed objects can be created, but the access mechanisms
make it appear as if they exist in a shared memory space.
This also means that every process can access all of each
such object independently of what other processes are doing.
Today, this programming model is supported by a number
of programming languages such as Unified Parallel C24 and
Co-Array Fortran.25

However, before these programming languages were
defined, it was already realized that the PGAS paradigm can
be very helpful in solving some problems. In particular, in
the context of the development of NWChem, this paradigm
offered a way to deal with collections of tasks with a large
spread in execution time without incurring large load
imbalance overheads. To support this paradigm, the Global
Array toolkit (GA) was created.20 This library provides an
efficient and portable “shared-memory” programming inter-
face for distributed-memory computers. Each process in a
Multiple Instruction Multiple Data (MIMD) parallel program
can asynchronously access logical blocks of physically
distributed dense multidimensional arrays, without the need
for explicit co-operation by other processes. Unlike other
shared-memory environments, the GA model exposes to the
programmer the nonuniform memory access (NUMA) char-
acteristics of high-performance computers and acknowledges
that access to a remote portion of the shared data is slower
than to the local portion. The locality information for the
shared data is available and can be exploited to maximize
the performance of codes if desired.20

Combining the global data access characteristics provided
by the GA with data redundancy, it becomes particularly
easy to ensure access to all data even in the case where
processes fail. Hence, this library provides a highly suitable
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platform with which to construct fault tolerant applications.
Obviously, when the GAs were first written, fault tolerance
was not envisioned as a problem. Therefore, changes to the
library itself are required to make it fault-resilient. These
changes are nontrivial, as they touch every layer in the
library’s software stack. They include considering how the
library should respond to basic communication calls involv-
ing failed processes, implementing collectives such as
barriers with incomplete sets of processes, as well as fault
detection mechanisms to establish which processes have been
lost and propagating that information to the processes that
need to know, and modifying the process manager (the
equivalent of mpirun for MPI applications) to respond
correctly to the loss of processes. This work is currently
ongoing, but its discussion is beyond the scope of this paper.
Instead, in this paper, we limit ourselves to describing how
a fault-resilient GA implementation can be used to build fault
tolerant computational chemistry applications. For perfor-
mance evaluations, a traditional GA library is used, and faults
are simulated by making selected processes behave as if they
have failed. This triggers the same responses in the applica-
tion and the fault tolerance layer as a real fault. Therefore,
it is expected to give a realistic impression of the behavior
of the real fault-tolerant code.

2.3. The Coupled Cluster Method. The Coupled Cluster
(CC) method has since its inception26 developed into the
dominant method for highly accurate calculations of total
energies. Due to the relatively high cost of the method, a
hierarchy of methods has been developed of increasing
accuracy and cost. The natural relationship between CC and
perturbation theory allows for the addition of perturbative
corrections that offer increased accuracy at a lower cost than
the full CC method at the corresponding level of approxima-
tion. The most widely used method of this kind is the
CCSD(T) method. This refers to a CC method in which the
singly and doubly excited Slater determinants are accounted
for in the iterative solution of the equations, the CCSD part.
The triply excited Slater determinants are accounted for using
perturbation theory, which is indicated with (T).

The theory of CC methods has been described in a number
of papers.26-29 In this paper, we concentrate on creating a
fault-tolerant implementation of the approach by Kobayashi
and Rendell.30 The initial implementation is characterized
by an iterative CCSD solver that has a cost that scales as
O(N6). Every iteration, this solver writes out the current
values of the amplitudes, which allows this part to be
restarted. The CCSD part is followed by the (T) term to form
CCSD(T). This part requires transformed integrals with at
most three virtual indices, which cost O(N5) to compute,
followed by the triples contributions that cost O(N7). Because
the triples contributions are calculated perturbatively, they
are evaluated in a single pass. Although at O(N7) the triples
contributions are the most expensive part because they are
evaluated in a single pass, there is no natural point from
which to restart their evaluation.

Despite the algorithm having no natural restarting point,
this does not mean that it is impossible to make the code
restartable. In doing so, the transformed two-electron inte-
grals would have to be recalculated, as storing them would

require excessive amounts of disk space. For the triples
contributions themselves, the total number of tasks could be
divided into blocks of some fixed number of tasks. At the
end of each block, the current total triples contribution could
be saved along with the task number of the next task. This
would provide the data needed for restarts. The disadvantages
of doing this are increasing the load imbalance due to extra
barriers needed at the end of every block of tasks and a loss
of productivity, as restarting a calculation requires resubmit-
ting the job and waiting for its execution. Hence, having a
facility that allows the code to continue without restarting
is usually beneficial.

In addition to the fact that it is beneficial not to have to
restart the perturbative triples, their high cost and good
scalability make this code one of the prime candidates to be
executed on extreme scale computing platforms. Indeed, this
code was run on 200 000+ cores on Jaguar already.16 So
this code is likely to run in cases where fault tolerance is
essential and therefore a suitable target application for our
approach. In the future, we plan to extend our fault tolerance
approach to other code modules as well.

3. Overall Design

In the following sections, the model for achieving fault
tolerance based on in-memory redundancy is outlined.
Important questions pertaining to this model are
• What kind of failure scenarios can this model address?
• How extensive are the code changes needed to integrate
this model into an application?
• What are the performance overheads if no faults occur?
• What is the overhead to recover from a fault? To answer
these questions, we built a fault-tolerant version of CCSD(T)
using the model described here. With this implementation,
we illustrate the answers to these questions.

A general aspect in a redundancy-based fault tolerance
model is that when a process fails its memory becomes
inaccessible, and the data it held are lost. Therefore, these
data need to subsequently be fetched from a different
location. To facilitate these changes in the communication
pattern, it is essential to have a memory management
approach that is sufficiently flexible. The GA31 provides a
virtual shared memory programming model that gives every
process the same view of a distributed data structure. This
way, it offers sufficient flexibility for the approach we
propose. Therefore, on the application side, we have built
an infrastructure on top of the GA that manages the
application response to faults, as outlined below. We have
currently integrated this infrastructure with NWChem32 to
deploy it in real chemistry applications.

NWChem breaks large-scale calculations up into small
tasks that work on particular blocks of data. When a failure
occurs, the responsibility for a particular task needs to be
transferred to another process. To enable this, visibility of a
particular process’s work to other processes has to be
ensured.

Combining the knowledge of a process’s state and the
redundancy of the data, it is possible to devise a recovery
mechanism that returns the overall calculation to a valid state
after a fault has occurred. In the following subsections, we

Scalable Fault Tolerance Model J. Chem. Theory Comput., Vol. 7, No. 1, 2011 69



present the details of the data storage model, the task model,
and the fault recovery mechanism. This description of the
general approach is followed by a description of how this is
applied in the triples part of the CCSD(T) code.

3.1. The Data Storage Model. As stated in the outline
of the general approach, data redundancy is used to enable
fault recovery. This means that for every distributed data
object a primary copy is created that is identical to a GA as
usual. Figure 1 shows, at the top, the logical view of the
GA. This array is partitioned into blocks across a processor
grid. The choice of the processor grid depends on the number
of dimensions in the GA, the sizes of the dimensions, and
the number of processors. In practice, a single process is
associated to a given “processor” in the processor grid. After
this partitioning, every process is given at most a single data
block of the GA, as shown in the middle.

In addition, a shadow copy is created. The data in the
shadow copy are shifted by a given number of processes
relative to the primary copy in a cyclic fashion, as shown at
the bottom. The shift is referred to as the “processor shift”
and can be chosen arbitrarily as long as it is not an integer
multiple of the number of processes (that would lead to both
the primary and shadow copies of the data residing at the
same process). Obviously, under the assumption that all
processes on a single node are likely to fail together, the
processor shift should be at least equal to the number of
processes per node to ensure that the shadow copy resides
on a different node than the primary copy.

The processor shift is implemented using the new restricted
array capabilities of the global arrays. This allows for
physical data blocks to be mapped to processes using an
arbitrary mapping. Hence, all of the administration related
to the mapping between the primary and shadow copies can
be off-loaded to the GA. In addition, the restricted array
mappings also allow mappings that are not simply a cyclic
shift. For a given machine, this capability can be exploited
to place the data such that the application fault tolerance is
maximized while minimizing the communication cost. Doing
this requires knowledge of the anticipated fault behavior of
the machine as well as the topology of the interconnect. At
present, we do not exploit this, but in the future we could
do so if that turns out be beneficial.

If being able to access data after a failure was the only
concern, it would be sufficient to have only the primary and
shadow copies. In practice, however, it is possible for a
process to fail while it is updating data held on remote
processes. This data will still be accessible after the failure
but its contents might be corrupted. Therefore, a facility is
needed to record the status of every data block. Hence, for
both the primary and shadow copy, an additional GA is
needed with a length of the number of processes. These
arrays serve as flags to signal whether the corresponding data
block at the particular process is “clean” or “dirty”.

In summary, in this approach, every GA in the original
implementation is replaced with a redundant GA for fault
tolerance. Every redundant GA consists of four GAs, the
primary copy, the shadow copy, the primary copy status flags,
and the shadow copy status flags. In our implementation,
this collection of data structures is treated as a single object
with an interface that is essentially the same as the one for
the usual GAs.

In analogy to the usual GA implementation, the interface
to manage these data structures implements five routines:

(1) nsft_create: This creates an N-dimensional distributed
array with its associated redundant copies and the
block status flags.

(2) nsft_destroy: This clears a distributed array and its
associated data structures up.

(3) nsft_map_put: This stores data in a distributed array,
managing access to the shadow copies and the status
flags. It can transfer data to multiple arrays in a single
call.

(4) nsft_map_acc: This is the same as nsft_map_put apart
from the fact that, whereas put overwrites the original
data, the accumulate (named “acc” for short) routine
adds to it.

(5) nsft_get: This gets a patch of data from any of the
copies that are available.

The put and accumulate routines are for the most part straight
equivalents of the corresponding routines in the GA library.
However, the need to be able to update multiple arrays in
one call is a requirement of the fault recovery, and the details
of this will be discussed below.

3.2. The Task Model. Traditionally, the work in a given
compute phase is broken up into tasks. Any task in some
way involves

• establishing which task to do
• retrieving the data needed to complete the task
• executing some instructions to generate results
• storing the results in the appropriate places

In practice, these steps do not necessarily have to be executed
in this order. For example, a task may get some data, do a
bit of work, store some results, get some more data, do more
work, and accumulate the result in a local buffer (the buffer
could be globally summed after all tasks have been com-
pleted). However, if the calculation has to be able to recover
from faults, a stricter set of rules is needed.

First of all, in order to have a simple way to identify what
every process is doing, every task is associated with a unique
number within a particular computational phase. This task
number dictates what work is involved in the task, what data

Figure 1. Relationships between the logical array, the
physically distributed primary copy, and the distributed shadow
copy.
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it needs, and, most importantly, what data it is going to
change. The advantage of this is that if a task needs to be
re-executed due to a fault, the recovery mechanism only has
to pass the task number to a suitable process to identify what
needs to be done. To some extent, task numbers are already
implicitly used in this way but often with the assumption
that the task numbers are monotonically increasing. In a fault-
tolerant application, this assumption no longer holds, as after
a fault, the recovery mechanism may pass an old task number
to a process for re-execution.

So as a general rule, the task model will insist that a
process loops over tasks. The tasks may come in a random
order, and whenever a task number is in the valid range from
1 to the number of tasks, the task parameters are calculated
from the task number, and the required work is done. If the
task number is outside the valid range, this means that all
tasks have been done. Typically, the process then proceeds
to a barrier that marks the end of the compute phase in
question.

As far as accessing data is concerned, the fault-tolerant
task model imposes extra rules only on the way data are
changed. As a general rule, fault tolerance requires that when
a fault occurs the state of a calculation can be either restored
to the point where it is as if a task was never started or
progressed to the point where it is as if a task was fully
completed. This all or nothing approach is very much akin
to transactional systems.33 Transactional approaches are
commonly used in distributed databases and business ad-
ministration systems. They have two characteristics that are
crucial to these application areas: atomicity and serializabil-
ity. Atomicity in this context means that all modifications
of all data items in a transaction are either progressed to
completion or no updates happen at all, leaving all persistent
data structures in their original state. Serializability means
that all transactions complete as if they were executed in
serial in some order. This implies that no process can get a
view of the data where only part of the transaction has taken
place, i.e., any of the intermediate states of the transaction.
The implementation of these approaches rely on a two-stage
mechanism for executing transactions. In the first phase, the
data needed for the updates are sent out to all of the relevant
data servers, but the persistent state is not changed. In a
second phase, the changes are committed, meaning that the
changed data structures take effect in the persistent state and
the previous versions are discarded. If for some reason not
all servers can commit, an abort can be issued, causing all
modified versions to be discarded and the unmodified
versions to remain part of the persistent state. Crucial is the
separation between the data transmission and changing the
persistent state of the data.

Although, in principle, elements of transactional updates
could be implemented in the GA, at present such mechanisms
are not available. The reasons for not supporting these
mechanisms are related to both need and cost. If fault
tolerance is not an issue, then there is no benefit in having
a transactional mechanism. To the contrary, because on the
data server side the information flows through an additional
copy, three memory accesses are needed for each data
element. In the current implementation, only one memory

access is needed when the data are directly received into
the persistent data set. In addition, the transactional approach
requires nontrivial amounts of extra memory as well for
storage of data between transmission and committing.

In our approach, the basic GA functionality is unchanged.
This, however, requires that all primary copies are updated
at the same time, so that if a fault occurs, all of those blocks
can be marked dirty, and the unchanged shadow copy blocks
count as the true record of the data. It also requires that all
of the shadow copies be updated at the same time, so that if
a fault occurs at that stage, all affected shadow copy blocks
can be marked dirty, and the already updated primary copies
count as the true record of the data. Obviously, a scenario
in which some arrays have both their primary and shadow
copies updated whereas others were left unchanged altogether
leaves the calculation in an unrecoverable state. To facilitate
writing code that adheres to these data update requirements,
the map-based put and accumulate routines are provided.
These routines can update as many arrays as needed in one
call and ensure that the updates are executed in a way that
allows for fault recovery. To ensure correctness, however,
we also have to enforce that there can only be at most one
call to update data per task. Finally, in order for a different
process to continue from where a failed process left off, it
is essential that every task stores its results in a distributed
data array. No results shall be stored in local buffers beyond
the scope of a task.

Obviously, for the fault recovery mechanism to decide on
the right course of action, it needs to know what a process
was doing at the time of failure. Of course, it needs to know
which task was being executed, but it also needs to know
what was being done on the task. In particular, we distinguish
four different states:

(1) acquiring the task number
(2) working (getting data and computing results)
(3) updating primary data copies
(4) updating shadow data copies

These task states together with the task number are stored
in a distributed and redundant GA with one element per
process, so that the recovery mechanism can access this
information when needed. The management of these states
can be completely hidden from the programmer.

The task model needed for fault tolerance is summarized
in Figure 2. The two gray sections are provided by the infra-
structure for fault tolerance, whereas the white section is
application-dependent code. The arrows indicate additional
communication to record the state of a task in a globally
accessible place. This way, the task state can be recovered
in case the task fails.

3.3. The Fault Recovery Mechanism. The components
discussed so far are essential ingredients in making fault
tolerance possible. The fault recovery mechanism is the part
that makes it work. It has to address the following questions:

• who executes the recovery mechanism?
• when is the recovery mechanism invoked?
• what steps are taken?
To answer the question of who is to respond to a fault,

every process is assigned a “buddy” process. In this context,
the two processes in a buddy pair are inequivalent in that
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the buddy of a process steps in and takes care of the process’s
responsibilities when it no longer can due to a fault.
However, this relationship does not work the other way
around. For a given process, its buddy is chosen by
subtracting the processor shift (as used in the data storage
scheme) of the process rank.

The most convenient time for the buddy process to respond
is when it reaches its next time to acquire a new task number.
This allows the routine that generates the new task number
to take generic remedial steps, as outlined below, and if the
failed task needs to be re-executed, its number can be passed
to the buddy process as its next task. This way, the remedial
steps can be almost completely hidden from the programmer,
and no code has to be written to specifically deal with the
re-execution of tasks. Instead, the normal code can be used
for recovery-driven re-execution as well as normal tasks.

The recovery process follows a very simple approach to
ensure that the data the program uses are in a consistent state
and that, where necessary, tasks that failed are finished. The
precise steps that need to be taken depend on the state of
the tasks of the failed process at the time the fault occurred.
Obviously, the buddy process first has to retrieve the task
number and state of the failed process, which are stored in
a redundant GA. If the state of the task was “acquiring new
task”, at present, recovery is not possible, and the calculation
terminates. As shown in section 3.4, this situation is very
unlikely to arise, but if it becomes a problem, it can be
addressed by recording the status of every task rather than
every process. If the state was “working”, then no remedial
action is needed, but the failed task needs to be re-executed.
If the state was “updating primary copies”, then the contents

of the associated memory are undefined. Hence, the memory
blocks associated with the failed task are worked out, and
those blocks are marked “dirty”. The programmer has to
provide a routine to the task generator that can provide a
list of blocks a task will change on the basis of the task
number and process rank. As this relationship is highly
dependent on the particular algorithm the program executes,
there is no general other way of obtaining that information.
If the primary copies were corrupted, the task results will
not have been stored in the shadow copies either, and the
task needs to be re-executed. Finally, if the state was
“updating shadow copies” then the associated blocks of the
shadow copies are marked “dirty”. However, as the results
are already stored in the primary copies, there is no need to
re-execute the task in this case.

Concluding this section, it is clear that most of the details
of the fault recovery can be hidden from the programmer.
The only thing that cannot be hidden is the relationship
between the task number and the data that task updates, as
this is an intrinsic property of the application algorithm.
However, generating this dependency should be trivial for
most algorithms.

3.4. Summary of the Fault Tolerance Approach. Con-
sidering the approach outlined above, it is clear that this
approach cannot deal with all faults. The approach explicitly
assumes that faults lead to process termination and that soft
faults do not occur. In addition, the failure of two processes
differing in rank by the processor shift destroys both the
primary and shadow copies of some of the data, leaving the
calculation in an unrecoverable state. However, the likelihood
of such failures is the square of the probability of any given
process failing. That is assuming that the processor shift is
chosen such that the likelihood of the one node failing is
independent of a failure of the other. Hence, this should be
very small for any reasonable machine.

Furthermore, at present, the approach cannot recover from
a fault occurring when a process is acquiring the next task
number. The reason is that if the global counter generated a
task number but the receiving task failed before storing this
number in a globally accessible place, then this task is lost.
At present, this is not expected to be a significant problem,
as the code spends very little time establishing the next task
number compared to the rest that it does. So the chance of
failing in this phase is very small. However, if needed there
are at least two ways in which the problem can be addressed.
One is to change the global counter to keep a record of the
last task number it handed out to each process. Storing this
record in a GA keeping all data elements on the same process
as the global counter itself allows an efficient implementa-
tion. The reason is that the data are written often but read
once. That is, the data only need to be read if a task failed
while getting the next task number. Then, checking the
consistency between the task state and the last global counter
generated task number allows the determination of what task
should be executed. The other way to address this issue is
to store the state of every task. At the end of the compute
phase, all tasks should be completed. Ones that are not must
have remained uncompleted due to faults, and remedial
actions can be triggered to complete them nevertheless.

Figure 2. Outline of the stages in the fault-tolerant task
model. The arrows indicate additional communication to
record the task state changes needed.
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Finally, the recovery process can cause a loss of data
redundancy. If a process fails while updating the primary or
shadow copies, the corresponding copy is marked “dirty”,
after which only the other copy remains. It is tempting at
that stage to try and salvage the dirty copy with data from
the clean copy. However, during the compute phase, this
can lead to inconsistencies. To see this, consider processes
A and B, which are executing tasks that are both going to
update the same patch of a redundant GA. The primary copy
of that patch resides on process P and the shadow copy on
process S. Now process A fails while updating P, so the data
are P is dirty. Process B has finished its task, updates P, and
is about to update S. At this point, the salvage procedure
kicks in copying the data from S to P and marking P “clean”
again. Subsequently, process B updates S. At this time, the
consistency between the redundant copies is lost. The primary
copy contains data without the contribution from B, and the
secondary copy includes the contribution from B. A similar
scenario can cause problems attempting to salvage a “dirty”
shadow copy by using the data from the primary copy. So
these salvage operations should not be attempted during the
compute phase when a number of processes could simulta-
neously be changing the redundant GAs. The only time such
salvaging can be done is as part of the barrier at the end of
a computational phase. Only at that time can one guarantee
that copying data between the primary and shadow copies
does not lead to inconsistencies due to missed updates.

The loss of redundancy due to dirty blocks is obviously a
direct consequence from the way the GA implements data
updates. If a transactional GA interface were implemented
and used, this issue would not arise. Depending on how
severe this issue becomes, this might be a reason to develop
a transactional approach.

3.5. Code Changes Required for Fault Tolerance. Aside
from the question of which faults this approach can deal with,
there is the question about the extent of the code changes
needed to implement it. In Figure 3, a section of pseudocode
is shown that illustrates the changes needed to implement
fault tolerance in the CCSD(T) code. The first obvious
difference is how in the fault-tolerant version key task
parameters are derived from the task counter. In the original
version, they were established using an implicit dependency
on the task counter, but as discussed that dependency is
broken due to the fault tolerance. Second, fault tolerance
requires that intermediate results are kept in a globally
accessible space. Hence, the local variable “sum” had to be
replaced by a redundant GA. The contributions to the energy
are added on by the sft_map_acc routine, which applies
consistent updates to the primary and shadow copies. In this
case, it only adds to one array, but it can modify any number
of arrays. Third, notice the additional parameter to sft_nxtask,
which is a routine that informs the recovery process about
the data blocks a given task number modifies. As this
information is application-specific, this routine needs to be
provided by the application programmer. Finally, after all
contributions have been summed into “g_sum”, the various
partial results need to be collected and added together to
arrive at the final answer. Obviously, some code changes
are needed, and some thought needs to go into this to arrive

at a fault-tolerant implementation. Nevertheless, the example
clearly shows that these changes are relatively minor. In
particular, the administration involved in maintaining a
calculation in a recoverable state can be completely hidden
from the application programmer.

4. Performance Evaluation

The maintenance of multiple copies of distributed data
structures and the task states all come at a cost. Therefore,
an important question is whether the approach suggested is
actually practical or whether the overheads make it unusable.
To assess these overheads, we performed calculations on
uracil with a cc-PVTZ basis set34 using Cartesian basis
functions. The resulting calculation involves 340 orbitals,
of which 29 are doubly occupied. All orbitals were correlated
in the CCSD calculation. Subsequently, we performed
CCSD(T) calculations both with the original code and with
the fault-tolerant code.

The calculations were run on Chinook.35 Chinook is a 160
TFLOP that consists of 2310 HP DL185 nodes with dual
socket, 64-bit, Quad-core AMD 2.2 GHz Barcelona Proces-
sors. Each node has 32 GB of memory and 365 GB of local
disk space. Communication between the nodes is performed
using InfiniBand with Voltaire36 switches and Mellanox37

adapters. The system runs a version of Linux based on Red
Hat Linux Advanced Server. A global 297 TB SFS file
system is available to all of the nodes.

The calculations were run on three different processor
counts, i.e., 256, 512, and 1024 processors. As the calculation
is relatively small, it did not scale well to 2048 processors.
For each processor count, the calculations were run three
times, each time as a new job so that different node pools
were used. Although this does not provide a statistically
significant sample, it allows spurious results to be ruled out.
The timings obtained were averaged over the three runs and

Figure 3. Comparison of normal code versus fault-tolerant
code.
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are displayed in Figure 4. The figure compares for each
calculation the time taken by the original code, the fault-
tolerant code without faults, and the fault-tolerant code with
one fault at the beginning of the fault-tolerant code section.
The results show that the overhead incurred is 8.7%, 9.5%,
and 9.9% for 256, 512, and 1024 processors, respectively.
This overhead is largely incurred during the integral trans-
formation phase of the calculation; the triples evaluation
incurs an overhead of only 1.5%. As the triples component
has a complexity of O(N7) and the integral transformation
O(N5), this problem becomes less severe for larger calcula-
tions. In addition, the overheads are relatively insensitive to
the processor count. Hence, when no faults occur, the
overheads are sufficiently low for this technology to be used
in routine calculations. We also measured the fraction of the
time spent obtaining new task numbers, for which we found
that 0.13% of the time the code is in a state where it currently
cannot recover from a fault. Hence, in the vast majority of
fault instances, the code will be able to continue with the
current implementation.

So far, the case where no faults occur was considered,
but the overhead of recovering from a fault is very important
for practical applications. However, establishing this over-
head is slightly complicated by the fact that, by continuing
in degraded performance mode, any measurements will mix
two aspects. Initially, there is the cost of bringing the data
back into a valid state plus potentially re-executing the failed
task. After that, there is the impact of continuing the
calculation with one less processor. In practice, the timings
fluctuate too much to separate these two effects. Hence, we
simulate a process failing on its first task, as this will have
the maximum impact and thus provide an upper limit.

The results in Figure 4 show that the loss of a single
process leads to a performance degradation of at most 0.71%
where one processor corresponds to 0.39% of the total
computing capacity with 256 processors. This performance
degradation includes the initial execution of the failed task,
the fault recovery, the re-execution of the failed task, and
the loss of one processor’s compute capacity for the
remainder of the calculation. Overall, this performance

degradation is on the same order of magnitude as running
the calculation on one processor less throughout; this impact
is definitely small compared to the impact of aborting the
whole calculation.

5. Conclusions

In this paper, we have discussed the challenges posed to
computational chemistry by the fact that extreme scale
computers are likely to have relatively small MTBFs. To
address this, we have considered making real computational
chemistry code fault tolerant. The aim of this effort is to
allow the program to correctly continue execution despite
the loss of processes. We have presented an approach that
offers this capability, integrated it into NWChem, and
evaluated the performance of the method for the perturbative
triples component of CCSD(T) calculations. It was shown
that the fault-tolerant code runs with an overhead of only a
few percent relative to the original code. The occurrence of
a fault imposes an additional overhead of less than 1%. These
overheads are acceptable in comparison to the alternative in
which, currently, the effort expended on the calculation
would be lost. Even in the ideal case where the triples would
be restartable, the disruption caused by terminating and
restarting the application would be significantly larger than
the overhead of continuing the calculation in degraded mode.

We plan to deploy the infrastructure developed to other
algorithms throughout NWChem. In particular, it is necessary
to test the approach for algorithms where communication
dominates more. The approach itself is not tied to NWChem,
and we expect applications of it in other, most likely GA-
based, codes as well.
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M.; Celani, P.; Korona, T.; Mitrushenkov, A.; Rauhut, G.;
Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.;
Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.;
Goll, E.; Hampel, C.; Hetzer, G.; Hrenar, T.; Knizia, G.;
Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.;
McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.;
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Abstract: A parallel implementation of the recently developed local pair natural orbital
coupled electron pair approximation (LPNO-CEPA/n, n ) Version 1, 2, or 3) and the
corresponding LPNO coupled cluster method with single- and double excitations
(LPNO-CCSD) is described. A detailed analysis alongside pseudocode is presented for
the most important computational steps. The scaling with respect to the number of processors
is reasonable and speedups of about 10 with 14 processors have been found in benchmark
calculations (wall-clock time). The most important factor limiting the efficiency of the scaling
with respect to the number of processors is probably the limited bandwidth of the presently
prevailing multicore machines. The parallel LPNO methods were applied to study weak
intermolecular interactions. Initially, the well-established S22 set of molecules was studied.
The mean absolute error resulting from the use of the LPNO-CEPA/1 method relative to the
most recent CCSD(T) reference data is found to be 0.24 kcal/mol. Thus, LPNO-CEPA/1
holds great promise for the efficient ab initio treatment of weak intermolecular interactions.
In order to demonstrate the applicability of the methods to real systems, a two-dimensional
potential energy surface for a trimer of 2,4-dihydroxy-3-acetyl-6-methyl acetophenone
[C11H12O4] (81 atoms, 1296 basis functions, 133 single points) has been calculated with the
LPNO-CEPA/1 method. In this system, a clear distinction can be made between hydrogen
bonding and π-π interactions. The global minimum on the PES obtained from the calculations
agrees excellently with the experimentally determined crystal structure. By contrast, popular
density functional methods show no discernible minimum.

Introduction

The ability to accurately and efficiently calculate electron
correlation effects has been one of the major goals of
electronic structure theory during the last decades. Density
functional theory (DFT) represents the most popular family
of methods in this respect.1,2 Owing to their excellent
price/performance ratio, DFT methods have become the
standard tools for the calculation of molecular properties
in most chemical applications. However, DFT methods

do not represent a systematic hierarchy that converges to
the exact solution of the Schrödinger equation, frequently
contain empirical parameters, often are constructed with
respect to arbitrarily chosen reference systems such as the
inhomogeneous electron gas, and incorporate electron
correlation effects in a somewhat ad hoc fashion. In
particular, DFT methods do not incorporate dispersion
effects and empirical corrections are required in order to
obtain reasonable results for weakly bound systems
(however, see recent efforts to incorporate the van der
Waals interaction empirically3-7 or by models based on
physical reasoning8-13).* Corresponding author e-mail: neese@thch.uni-bonn.de.
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An arguably more systematic route toward the incor-
poration of electron correlation effects is offered by wave
function based ab initio methods, all of which take the
Hartree-Fock (HF) determinant as the starting point. It
has been realized that many body perturbation theory
(MBPT) is often not robust enough for obtaining accurate
results and only the lowest order correlation method,
second order many body perturbation theory with Möller-
Plesset partitioning (MP2) has survived as a widely used
method owing to its comparatively small computational
cost (for recent developments see refs 14-22). For
accurate results, however, it is important to use iterative
methods. The most popular family is based on the coupled
cluster (CC) expansion that is size consistent, unitarily
invariant, and converges reasonably quickly toward the
full CI limit.23-25 It is well-known that for obtaining
accurate results, it is necessary to include connected triple
excitations at least in a perturbative way, thus leading to
the “gold” standard CCSD(T) method.26-28 However, this
method features seventh order scaling with respect to
molecular size and is hence restricted to small molecules.
An intermediate approach that lacks the rigor of CC theory
but has been proven to lead to usefully accurate results
(intermediate between CCSD and CCSD(T))29 is the
coupled electron pair approximation (CEPA30-34) which
may be viewed as a simple size consistent modification
of the configuration interaction methods with single- and
double-excitations (CISD). CEPA is of slightly lower
computational cost than CCSD but is usually more
accurate.29

The most expensive steps in these methods involve
multiple nested summations over the entire virtual orbital
space. Many efforts have been done aiming in the
development of low-order scaling correlation methods, like
the ones from Werner and co-workers,22,35-37 Head-
Gordon and co-workers,38-40 Ayala and Scuseria,41,42

Carter and co-workers,43,44 Auer and Nooijen,45 and
others. In this spirit, we have recently revived the method
of pair natural orbitals (PNOs30,31,33,34,46,47) that greatly
reduces the computational cost of these contractions and
make the associated computational cost asymptotically
linear scaling with respect to molecular size.48,49 The PNO
expansion can be viewed as a means of greatly compacting
the information content contained in the virtual space thus
leading to very compact correlated wave functions.48 This
is particularly important in combination with the large
basis sets that are known to be required for obtaining

accurate results in correlated ab initio calculations. In
combination with localized internal orbitals and an
electron pair screening procedure, the correlated singles-
and doubles-wave function is expanded in a linear scaling
number of wave function parameters. Our actual realiza-
tion of the method in the framework of the CEPA and
CCSD methods is not linearly scaling but rather retains
some (small) fifth order steps.48,49 Nevertheless, the
methods have been proven to be efficient, reliable, of black
box character and to recover typically 99.9% of the
canonical correlation energy. In fact, some test calculations
on molecules in the range of 40 to 80 atoms revealed that
the actual time required for the correlation calculation was
only two to four times larger than that taken by the
proceeding Hartree-Fock calculations.49 Thus, a very
large range of chemical applications can be envi-
sioned.

In this work, the applicability of the LPNO methods is
further enhanced through the development of a parallel
code. Furthermore, we demonstrate that the LPNO-
CEPA/1 method provides accurate results for weak
intermolecular interactions.

Theory

Theunderlying theoryof theLPNO-CEPAandLPNO-CCSD
methods is described in detail elsewhere.48,49 Here, we
will only briefly describe the working equations in order
to assist the understanding of the parallel program ver-
sion.

Working Equations. Starting from the closed-shell CISD
wave function and using the generator state formalism,50 the
CISD wave function is written as follows:

with i,j,k,l referring to occupied orbitals and a,b,c,d to
unoccupied ones. The residual for the double excitation
amplitudes is as follows:

where ∆ij is a method specific shift and Ψ̃ij
abdenotes the

contravariant configuration state function.50 As derived in
detailed elsewhere the working equation for the amplitudes
in the PNO basis (the PNO basis is indicated by an overbar)
becomes:
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where Kab
ij ) (ia|jb) and Jab

ij ) (ij|ab)are the usual exchange
and Coulomb operators and two-electron integrals in round
brackets are written in (11|22) notation. Sajbj

ij ) 〈ajij|bjkl〉 )
(dij†dkl)ajbj denotes the overlap between PNOs of different
pairs. The matrices dijare the transformation matrices from
the canonical virtual basis to the PNO basis of pair i,j.48

Following Meyer,47 K(Cj ij)ajijbjij denotes the ‘external ex-
change’ operator:

The singles residual becomes:

As explained in detail in refs,51,52 the QCISD and CCSD
methods can be implemented in a very similar fashion by
introducing “dressed” integrals (to follow usual conventional
we use cluster amplitudes t rather than CI coefficients C in
these equations). The doubles residual becomes:

The dressed quantities are defined elsewhere.49

The singles sigma vector can be written in an analogous
way as follows:

A complicating feature of LPNO-QCISD and LPNO-
CCSD is that the dressed operators change in every iteration
and can therefore not be precomputed over PNOs as in the

case of LPNO-CEPA. How to overcome this problem is
described in detail in ref 49.

Parallel Implementation. Our parallel implementation of
the LPNO-CEPA and LPNO-CCSD methods, is based on
standard Message Passing Interface53 (MPI) libraries. The
reason for this choice is portability of the code to both shared-
and distributed memory machines. One important choice in
the design of the parallel algorithm is the use of static or
dynamic distribution of work across the processors. Dynamic
distribution potentially offers the opportunity for better load
balancing, especially when the number of processors is
increasing. Our target platforms are clusters of personal
computers (PCs) with a limited number of cores rather than
massively parallel computers. Given that load-balancing
problems do not appear to be overwhelming (vide infra),
we have chosen the static distribution model, which poten-
tially also offers the significant advantage of data distribution
across local hard drives.

There are three computationally expensive parts of a
LPNO-CEPA/CCSD implementation: (a) the canonical in-
tegral transformation, (b) the transformation of various
classes of two-electron electron repulsion integrals into the
PNO basis, and (c) the calculation of the sigma vector. The
parallelization of these steps will be described in detail below.
The algorithm discussed below has been implemented into
the ORCA electronic structure package and is already
publically available.54

Canonical Integrals. The canonical integral transforma-
tions in the LPNO methods are based on the Resolution of
the Identity (RI) approximation.55 In the first step of the
transformation, the 3-index repulsion integrals over basis
functions are calculated, transformed to the molecular orbital
basis, and stored on disk. However, we prefer to avoid the
generation, storage and resorting of the largest class of such
integrals, (ab|K̃) (K̃ refers to an orthogonalized auxiliary basis
function in the Coulomb metric49). In the second step, the
necessary four index integrals are formed from the prestored
three index integrals. The first step is computationally
insignificant and will therefore not be further described.

In the second half transformation, the integrals that are
required for a LPNO calculation are generated: (a) all internal
(ik|jl), b) one external (ik|ja), (ij|ka), and c) two external
(ia|jb), (ij|ab). By far the largest set of integrals is the two
external integrals and thus special attention should be given
to their generation. Given that the set of one-external RI
integrals (ia|K̃) is rather small, they can conveniently stored
on disk. The generation of (ia|jb) then proceeds efficiently
(as in the case of RI-MP256) by efficient matrix multiplica-
tions. We store matrices ordered by the internal index to this
end (XaK

i )(ia|K̃)).
The generation of the Coulomb integrals, (ij|ab), is more

difficult as a convenient matrix driven strategy is less
obvious. Since the generation of the three-index RI integrals
over atomic orbitals, (µν|K), is computationally inexpensive
compared to the remaining steps, we have developed an
integral direct algorithm for the generation of (ij|ab) with
the intentions to: (a) minimize input/output (I/O) overheads,
(b) avoid lengthy integral sorts, (c) use efficient BLAS level
3 matrix multiplications to the largest possible extent within
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a given amount of core memory, and (d) achieve good
parallel scalability.

This strategy implies a batch algorithm that is structured
as shown in Figure 1. It is assumed that the all internal RI
integrals, (ij|K), fit into memory and this assumption has so
far never created a bottleneck in actual calculations. In each
batch, a loop over all internal pairs is performed and as many
external pairs as fit in memory are treated simultaneously.
In the parallel algorithm, the work is distributed over external
pairs thus leading to fine-grained parallelization. Inside each
batch, the RI integral generation is driven by an outer loop
over auxiliary functions K. For each K within a given angular
momentum shell, the entire matrix of atomic integrals Yµν

K

) (µν|K) is generated. From these integrals, BLAS level 3
matrix multiplications are used to generated as many (ab|K)
as memory permits. Truncated MO coefficient matrices are
set up to this end. These integrals are orthogonalized through
a second matrix multiplication with the V- 1/2 matrix (VKL

) (K|L) is the Coulomb metric) or an equivalent thereof.
The orthogonalized integrals are contracted in the third step
with (ij|K̃) in order to generate a subset of the target (ij|ab)
integrals. For storage of these and similar integrals, a special
data structure is employed (referred to as “Matrix Container”
in ORCA), where integrals are stored as matrices ordered
by the internal pair labels (Jij,Kij) as required by the matrix
formulation of the CCSD and CEPA equations (eqs 3, 5, 6,
and 7). In the parallel algorithm, a limited amount of
overhead arises from gathering the partial Jij operators
formed at different processors before writing them to disk.
This procedure also necessarily synchronizes the processes.
The rest of the algorithm does not require communication
and proceeds as efficiently as in the single processor case
since the size of the matrix multiplications are independent
of the number of processors. The disk storage of the integrals
is organized in a “per node” fashion, where the integrals are
stored only for each node and not for each processor or core.
This implies that if all processors are located on the same
node, the integrals are stored only once and are available to
all processors. As long as the communication overhead
remains small and the generation of the RI-integrals over
atomic orbitals is not rate limiting, the algorithm is expected
to scale nearly linearly with the number of processes.

In Table 1, we present timings for the transformation. For
all timings presented in this work, we used the molecule 5-[3-
(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-propoxy]-3-methyl-1-phenyl-
1H-py pyrazole-4-carboxylic acid ethyl ester (C24H23N3O5 ≡
1, see Figure 2).57 The def2-TZVP58,59 basis set is used (1130
contracted basis functions), together with the corresponding
def2-TZVP/C auxiliary basis (3122 auxiliary basis functions).

It is observed that the scaling with the number of
processes is, unfortunately, not perfectly linear. We believe
that the reason for this is that the calculations were
performed on a machine with four AMD 4 Quad-Core
AMD Opteron 8354 processors per node. For these
machines, it is known that memory bandwidth becomes
rate limitingforcomputeandmemoryintensiveoperations.60,61

However, a speedup of 9.6 is still observed with 14
processors. For parallel machines with better memory
bandwidth better scalability is expected.

Figure 1. Pseudo code for the parallel generation of (ij|ab) within the RI approximation as implemented in ORCA.

Table 1. Wall-Clock Timings and Speedups for the Parallel
Creation of the (ij|ab) Integrals for 1a

direct_Jij

processors

1 2 4 6 8 10 14

time (sec) 71008 33785 19269 13149 10611 8375 7424
speedup 1 2.1 3.7 5.4 6.7 8.5 9.6

a Basis Set: def2-TZVP58,59 (1130 basis functions). Auxilliary
Basis Set: def2-TZVP/C (3122 basis functions).

Figure 2. The structure of 1 ) 5-[3-(1,3-dioxo-1,3-dihydro-
isoindol-2-yl)-propoxy]-3-methyl-1-phenyl-1H-py pyrazole-4-
carboxylic acid ethyl ester (C24H23N3O5).
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PNO Transformation. The second computationally ex-
pensive step is the generation of electron-electron repulsion
integrals over PNOs. Since the number of PNOs is typically
much larger than the number of virtual orbitals, the trans-
formation must be carefully arranged in order to avoid
computational bottlenecks (Figure 3). As discussed in the
original work,48 the RI approximation is used to generate
the integrals over PNOs. The procedure is divided in two
steps. In the first step, the RI integrals over AOs are generated
((µν|K)) with the auxiliary index running slow, as described
above for the canonical integrals. From these integrals, we
first produce the canonical integrals (ij|K), (ia|K), and (ab|K)
for a given set of K’s that belong to a given angular
momentum shell inside the auxiliary basis set. This trans-
formation is done using BLAS level 3 operations. Hence,
sparsity and integral prescreening is used in the integral
generation but not in the initial transformation. A loop over
pairs P ≡ (ij) is next performed. Inside this loop, we first
generate and store the integrals (ij|K), (iajij|K), (jajij|K), and
(ajijbjij|K). Since the number of these integrals is linear
scaling, the storage creates no bottlenecks despite the fact
that there may be tens of thousands of PNOs in the
calculation. It should be noted that the algorithm contains
pair specific local fitting domains such that only those pairs
that have the auxiliary index K inside their domain are
treated. As explained in detail in reference,48 the domain
construction is organized using a highly conservative thresh-
old (TCutMKN ) 10-3) such that the error introduced is
negligible. The loop ends by synchronization in which all
integrals are communicated to all processors.

The last step of the PNO integral transformation algorithm
is driven by a loop over internal electron pairs. For each
pair, the local Coulomb metric is created and the pair specific
three index repulsion integrals created in the previous step
are orthogonalized to give three-index repulsion integrals
over orthogonalized auxiliary functions K̃. This enables the
calculation of the target integrals (iaj ij|jbj ij), (ij|aj ijbj ij),
(iaj ij|bj ijcjij), (jaj ij|bj ijcjij), and (aj ijbj ij|cjijdj ij) through efficient dense
matrix multiplications. These integrals are stored on disk.
This step of the algorithm is linear scaling and is, once more,
parallelized in a round robin fashion by distributing the loop
over pairs over all processors.

The final step of the PNO integrals transformation consists
of the calculation of overlap matrices between the PNOs of
different pairs. These overlap matrices are stored in packed
form on disk. Only a linear number of overlap integrals is
nonvanishing such that no storage bottlenecks arise. The
overlap integrals are calculated through efficient matrix
multiplications.

In Table 2, we present the time and speed-ups for the PNO
transformation. Once more, it is noted that the algorithm does
not scale perfectly linearly with the number of processors.
Again, we believe that this is due to limited memory
bandwidth of the machines used. However, a speedup of 8.2
is still observed for 14 processors.

Sigma Vector Construction. The third major part of the
LPNO-CEPA/CCSD methods is the construction of the
sigma vector. Below, we will comment on how the compu-
tationally most significant terms were implemented in the
parallel case.

Singles Fock. The construction of the singles Fock matrix
G(t1) is presently the most time-consuming step in the sigma-
vector construction during a LPNO-CCSD calculation. As
discussed in ref 49, this step is not necessary for LPNO-
CEPA or LPNO-QCISD which hence do have a timing
advantage over LPNO-CCSD. The advantages are most
pronounced for highly polarized basis sets where integral
evaluation becomes computationally expensive. The paral-
lelization of this step is, however, straightforward and follows
the techniques that are available throughout the ORCA
program. The load balancing obtained during Fock-matrix
construction is excellent and the direct computation of the
singles-Fock matrix scales nearly linearly with the number
of processors up to 14 processors. The only communication

Figure 3. Pseudo code for the parallel local transformation of the repulsion integrals to the PNO basis.

Table 2. Wall-Clock Timings and Speedups for the Integral
Parallel Transformation to the PNO Basis during a
LPNO-CCSD Calculation on 1a

PNO
transformation

processors

1 2 4 6 8 10 14

time (sec) 39494 25144 11691 8292 6990 7658 4821
speedup 1 1.6 3.4 4.8 5.7 5.2 8.2

a Basis Set: def2-TZVP58,59 (1130 basis functions). Auxilliary
Basis Set: def2-TZVP/C (3122 basis functions).
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required is the gathering of the partial Fock-type matrices
after the integral evaluation has been completed. It is to be
expected that this step will significantly improve through the
use of the RIJCOSX62 approximation.

Doubles-Doubles Interaction with No External
Labels. The computationally next most demanding term is
the disjoint doubles-doubles interaction that involves the
all-internal exchange integrals (ik|jl). These terms are written
in canonical form as follows:48

and in the LPNO case as follows:

The algorithm commences with a double loop over k and
l followed by reading a matrix of integrals, Kij

kl ) (ki|lj). This
is followed by a loop over pairs P with internal indices i
and j. Pair-pair interactions with negligible values of |(ki|lj)|
are dropped. The remaining significant contributions are
calculated by transforming the amplitudes of pair k,l into
the PNO basis of pair i,j and update of the sigma-vector.
Parallelization takes place by distributing the pair loop over
processors. There is no communication between processors
required in this step as the local sigma vector components
are gathered at the end of each coupled pair/coupled cluster
iteration. Thus, the only issue to be addressed is load
balancing that is once more done in a round-robin fashion.
Thus, this step should scale linearly with the number of
processors as the load balancing will tend to become perfect
for larger molecules.

Doubles-Singles Interaction with One External
Label. Quite unexpectedly, a step that becomes computa-
tionally significant in the LPNO methods is the interaction
of the double excitations with singles through integrals with
one-external label. The origin of this is that the singles are
left in canonical form. The sigma-vector contribution is
written as follows:

The complication arises from the fact that the doubles
amplitudes have to be in the canonical basis for the
calculation of this term. Hence, the back transformation from
the PNO to the canonical basis must be performed inside a
pair loop. It is to be expected that the calculation of this
term can be significantly improved through prescreening or
a more judicious choice if orbitals to expand the single
excitations in.

Parallelization is achieved by dividing the pair loop over
processors in a round-robin fashion. During the loop over
pairs, there is no communication needed among the proces-
sors and the parallel overhead comes just in the form of
gathering the individual parts of the singles sigma vectors,

which is computationally insignificant. Hence, this part of
the calculation should scale linearly with the number of
processors.

Doubles-Doubles Interaction with Two External
Labels. As discussed at lengths in refs 48 and 49 this term
can be written as follows:

As explained elsewhere,49 this term greatly profits from
precalculating the contractions of the canonical Jij and Kij
operators with the relevant PNO transformation matrices d.
During the iterations, these partial integrals are read and
contracted with the PNO amplitudes of the interacting pair
in order to arrive at the final sigma-vector contributions.

In order to parallelize this contribution, the first step
consists of the parallelization of the creation of the partial
integral file. This is achieved by treating only a subset of
internal pairs on each processor. This process creates a local
partial pair interaction file. Hence, during sigma-vector
construction each processor only processes this partial file
which means that no further explicit parallelization is
necessary.

Parallel Speedup of Sigma-Vector Contributions. In
Table 3 and Figure 4, the absolute times and speedups for
the creation of the sigma vector for the test molecule in
Figure 2 are shown. It is observed that up to 14 processors
the program scales very well, as expected from the analysis
presented above. In Table 4 the wall-clock times for the
complete LPNO-CCSD calculation are analyzed. An overall
speedup of 9.4 is observed for 14 processors. While this is
less than the ideal result, we have argued above that the
parallel efficiency is presently mainly limited by memory
bandwidth of the machines used and hence may well improve
for future generation hardware. We have nevertheless chosen
to use the present machines as they represent typical
hardware for computational chemistry applications. The main
result is that the wall clock times required for LPNO-CCSD
calculations on standard hardware can be reduced by an order
of magnitude through parallelization.

Application to Weak Interactions

Noncovalent interactions play a key role in modern chemical
research, for example in supramolecular chemistry. Hence,
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Table 3. Wall-Clock Timings and Speedups for the
Creation of the Sigma Vector in a LPNO-CCSD
Calculation on 1a

sigma
vector

processors

1 2 4 6 8 10 14

time (sec) 188857 99326 53619 34203 24420 22029 15024
speedup 1 1.9 3.5 5.5 7.7 8.6 12.6

a Basis Set: def2-TZVP58,59 (1130 basis functions). Auxilliary
Basis Set: def2-TZVP/C (3122 basis functions).
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this is also an active area of theoretical research.63-67 The
description of weak intermolecular forces presents a chal-
lenge for the theoretical chemistry since highly accurate
methods such as CCSD(T) are computationally too expensive
for routine use and computationally cheaper methods (mostly
based on DFT) are not accurate enough.68-71 (However, see
recent results of Grimme and co-workers6,56,72,73). As will
be shown below, the LPNO methods offer a computationally
tractable route to this problem without introducing any
element of empiricism.

S22 Benchmark Calculations. In order to evaluate the
accuracy of the LPNO based methods for intermolecular
interactions, the defacto standard S22 set of molecules
was treated.74 After the original publication in 2006, two
recent articles have been published75,76 that improve upon
the reference values. In this work, the results of Takatani
et al.76 were used as reference. The geometries provided
in the original publications were used throughout. We have
also followed the same extrapolation scheme for the
estimation of the complete basis set (CBS) limit. The
complete basis set (CBS) MP2 correlation energy is
estimated as follows:77

Here X and Y are (Y > X) the two cardinal numbers of the
two basis sets used for the two-point extrapolation and
EMP2

(X) ,EMP2
(Y) are the MP2 correlation energies calculated with

the two basis sets. The total energy in the CBS limit is then
estimated as follows:

Here Ecorr
(LPNO;X) is the correlation energy calculated with

LPNO-CEPA/1 within the smaller basis set and ESCF
Y the SCF

energy calculated with the larger basis set. Thus, it is assumed
that the SCF energy with the larger basis is close enough to
the basis set limit and that the difference between the MP2
basis set limit and the MP2 energy calculated with the small
basis set is a reliable estimate of the difference in correlation
energies that would be obtained with the high-level correla-
tion method (in this case LPNO-CEPA/1). The accuracy of
this scheme will be investigated in detail elsewhere.

For all molecules the aug-cc-pVTZ/aug-cc-pVQZ bases78

together with their corresponding auxiliary basis sets for the
RI approximation were employed. No counterpoise correction
was employed as this is inconsistent with the notion of CBS
extrapolation.

In Table 5, the calculated reaction energies are presented
together with the deviations from the reference values and
the calculated mean absolute error (MAE). It is observed
that relative to the reference CCSD(T) values, the MAE of
the LPNO-CEPA/1 method is only 0.24 kcal/mol and the
maximum error is 0.79 kcal/mol. These results imply that
the LPNO-CEPA/1 method is an accurate and computation-
ally efficient method for the treatment of weak, noncovalent
interactions. Importantly, this method can be applied to much
larger systems than the canonical CEPA, CCSD, or CCSD(T)
methods.

Figure 4. Plot of the speedups for a LPNO-CCSD calculation
on 1 versus the number of processors used. A computer with
four Quad-Core AMD Opteron 8354 Processors per node was
used for the calculations. The size of the cache memory was
512 Kbytes at the L2 level and 2 Mbytes at the L3 level.
Overall, 120 GBytes of memory were available for the whole
node and the program used 1.5 GBytes per processor.

Table 4. Wall-Clock Timings and Speedups for a
Complete LPNO-CCSD Calculation on 1a

total LPNO-
CCSD

processors

1 2 4 6 8 10 14

time (sec) 336789 183084 98674 66973 51393 47099 35927
speedup 1 1.8 3.4 5.0 6.6 7.2 9.4

a Basis Set: def2-TZVP58,59 (1130 basis functions). Auxilliary
Basis Set: def2-TZVP/C (3122 basis functions).

EMP2
(∞) )

X3EMP2
(X) - Y3EMP2

(Y)

X3 - Y3
(8)

Table 5. Calculated Reaction Energies for the S22 Set
Using the LPNO-CEPA/1 Methoda

complex ref 76
calculated

energy error

(ΝΗ3)2 -3.17 -3.03 -0.14
(Η2�)2 -5.02 -4.93 -0.09
formic acid dimer -18.8 -18.28 -0.52
formamide dimer -16.12 -15.61 -0.51
uracil dimer (C2 h) -20.69 -19.94 -0.75
2-pyridoxine.. 0.2-amino-pyridine -17 -16.24 -0.76
adenine...thymine (WC) -16.74 -15.95 -0.79
(CH4)2 -0.53 -0.49 -0.04
(C2H4)2 -1.5 -1.45 -0.05
C6H6...CH4 -1.45 -1.53 0.08
C6H6...C6H6(stacked) -2.62 -2.59 -0.03
pyrazine dimer -4.2 -4.01 -0.19
uracil dimer (C2) -9.74 -9.45 -0.29
indole...benzene (stacked) -4.59 -4.62 0.03
adenine...thymine (stacked) -11.66 -11.14 -0.52
C2H4...C2H2 -1.51 -1.54 0.03
C6H6...H2O -3.29 -3.27 -0.02
C6H6...NH3 -2.32 -2.37 0.05
C6H6...HCN -4.55 -4.63 0.08
C6H6...C6H6 (T-Shape) -2.71 -2.84 0.13
indole...benzene(T-shape) -5.62 -5.71 0.09
phenol dimer -7.09 -6.89 -0.20
mean absolute error 0.24
max error 0.79

a All values in kcal/mol.

Etotal
(CBS) ≈ ESCF

Y + Ecorr
LPNO;X + Ecorr

(MP2;∞) - Ecorr
(MP2;X) (9)
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In order to compare our results with the ones obtained
by present day DFT functionals, representative results are
collected in Table 6 and are graphically shown in Figure
5. While the collection of functionals represent only a
small fraction of the available literature, they do represent
the presently prevailing classes of functionals (Zhao
et al.13 present a comparison for a more extensive set of
functionals). Specifically, we used BP8679,80 (values taken
from reference53) as an example of a GGA functional,
B3LYP81-83 as a typical hybrid functional (values taken
from Prof. Grimmes Web site84) and B2PLYP85 as a
double hybrid functional (values taken from Prof. Grimmes
Web site84). These classes of functional were then
considered together with the semiempirical van der Waals
correction proposed by Grimme (B97-D,86 B3LYP-D,3,4

and B2PLYP-D3,4 functionals as dispersion corrected
GGA, hybrid and doubly hybrid functionals respectively.
M06-2X/MG3S4771 and M06-2X/DIDZ4771 (values
taken from ref 71) were used as typical hybrid meta-GGA
functionals. Finally, the recently proposed PW86PBE-
XDM(BR)8 and PW86PBE-XDM(XX)8 functionals that
are specifically tailored to the calculation of noncovalent
interactions were considered. It is pleasing to observe that

of all methods tested, the LPNO-CEPA/1 methods leads
to the smallest mean absolute error. Thus it even outper-
forms functionals that are specifically designed for the
calculation of weak interactions. That LPNO-CEPA/1 is
also highly successful for many other molecular proper-
ties48 and hence represents an accurate and efficient model
chemistry.

In order to analyze these results more closely, Figure 6
presents a plot collecting the deviations from the reference
values for different methods. The plot has three parts
describing reactions concerning complexes with mainly
hydrogen bonding interactions, complexes where dispersion
forces are dominant and finally complexes with both types
of interactions. It is concluded that none of the tested
functionals can treat both kind of interactions with consistent
accuracy. For example PW86PBE-XBM(BR), which pre-
sented the lowest mean absolute error of all functionals,
seems to describe hydrogen bonds accurate but shows errors
of up to 1.6 kcal/mol for the dispersion dominated cases.
Similarly, B97-D describes dispersion very well but is less
accurate for hydrogen bonds. The same is true for LPNO-
CEPA/1, where however, the largest absolute error is still
smaller than 1 kcal/mol.

Application to a Trimer System. In order to demonstrate
the application of LPNO-CEPA/1 to a larger “real-life” system,
2,4-dihydroxy-3-acetyl-6-methyl acetophenone [C11H12O4] (≡
2, see Figure 7) was treated. This system has been recently
synthesized and characterized by spectroscopic as well as X-ray
diffraction studies.87 It was found that in the crystal structure
both hydrogen bonds and π-π stacking interactions are crucial
for the formation of a two-dimensional supramolecular assembly
(Figure 7).

The crystal structure of 2 shows that there are discrete
trimers formed and it is evident that the π-stacking and
hydrogen bonding interactions can be nicely differentiated.
Monomer A interacts with monomer B through two hydrogen
bonds while the interaction between monomers B and C
occurs through π-π stacking interactions.

Since the two interactions are fairly well separated, we
have conjectured that only two geometrical parameters are

Table 6. Mean Absolute Errors for the S22 Set Using
Various Electronic Structure Methods

method type
mean absolute error

(kcal/mol)

LPNO-CEPA/1 0.24
PW86PBE-XDM(BR) GGA-XDM 0.34
B2PLYP-D double hybrid-D 0.43
M06-2X/MG3S hybrid meta-GGA 0.43
B97-D GGA-D 0.46
B3LYP-D hybrid GGA-D 0.52
PW86PBE-XDM(XX) GGA-XDM 0.72
B2PLYP double hybrid 1.79
B3LYP hybrid GGA 3.77
BP86 GGA 4.14

Figure 5. Mean Absolute Error for the 22 reactions of the
S22 set.

Figure 6. Deviations from the reference values for the S22
set obtained by different computational methods as described
in the text.

Weak Molecular Interactions J. Chem. Theory Comput., Vol. 7, No. 1, 2011 83



of key importance. The hydrogen bond contact interactions
and the π-π stacking distance. The total energy was scanned
along these two coordinates (see Figure 5) while keeping
the remaining internal structures of the building blocks fixed.
Eleven steps between -1 and 4 Å (relative to the experi-
mental structure) were performed for each coordinate.
Additionally close to the potential minimum, a finer mesh
of 0.2 Å was used. Overall, 133 points were calculated. For
comparison, both BP86 and LPNO-CEPA/1 calculations
were performed on the grid in combination with the
def2-TZVP59,88 basis set (def2-TZVP(-f) for LPNO-CEPA/
1, 1296 basis functions, 4500 auxiliary basis functions). In
both cases, we also performed calculations to correct for the
basis set superposition error (BSSE). In Figure 8, the
resulting potential energy surface for the BP86 case is shown.

Obviously, BP8680 correctly predicts the location of the
minimum for the hydrogen bond distance coordinate but
completely fails for π-π interactions. In Figure 9, the
analogous graphs are shown for LPNO-CEPA/1. Pleasingly,
clear minima almost exactly at the experimental geometry
are found for both, the hydrogen bond and the π-π
interaction coordinate. In Figure 10, one-dimensional cuts
are presented for both coordinates while keeping the other
at the experimental value.

It appears that the hydrogen bond is calculated ∼0.1 Å
shorter than the experimental value which appears to be
within the experimental error and the resolution of the
grid that was used to scan the energy in our calcula-
tions. For the case of π-π interactions, the calculated
minimum almost exactly corresponds with the experi-
mental one.

We note in passing that the hydrogen bond energy was
found to be 4.0 kcal/mol and the π-π stacking energy -17.7
kcal/mol, both of which are plausible values. Obviously, our
calculations neglect any impact of static disorder or crystal
packing effects and they cannot be compared to experimental
data. Nevertheless, this application should provide a reason-
able feeling for what is presently routinely possible with the
LPNO-CEPA/1 method.

Conclusions

In this work, a parallel implementation of the LPNO-CEPA
and LPNO-QCISD/LPNO-CCSD family of methods was
presented. A detailed analysis of the parallelization scheme
was presented together with representative timings. It was
argued that the scaling of the algorithm is inherently nearly
linear with the number of processors but that less than

Figure 7. The molcular structure of 2 ) (2-4-dihydroxy-3-acetyl-6-methyl acetophenone)3.

Figure 8. The PES of 2 calculated at the BP86/def2-TZVP level of theory. Left: 3-dimensional surface plot, Right: Contour
plot.
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optimum scaling is observed on present day machines due to
limited memory bandwidth. Nevertheless, even with clusters
built from cheap mass-market computers, speedups of about
an order of magnitude can be obtained with 14 processors.

Second, the accuracy of the LPNO-CEPA/1 method was
tested for weak intermolecular interactions. It was found that
LPNO-CEPA/1 is an accurate method for such applications:
the Mean Absolute Error was found to be 0.24 kcal/mol.
This shows that no essential physics are lost with the LPNO
approximations and that the canonical or LPNO-CEPA/1
methods provide results that are very close to CCSD(T) for
such interactions. Given that LPNO-CEPA/1 is applicable
to much larger systems than CCSD(T), this demonstrates a
high potential of this method for chemical applications
involving weak intermolecular interactions. Quite pleasingly,
it was found that the accuracy of LPNO-CEPA/1 exceeds
that of even the most purpose specific density functionals.
The applicability of the LPNO-CEPA/1 method to larger
systems was proven for the case of an acetophenone
derivative trimer in which both hydrogen bonding and π-π
stacking interactions are prominent. This shows that large
scale applications with ∼1500 basis functions are rendered

a routine application with the parallel version of the LPNO-
CEPA/1 program. Together with the fact that the LPNO-
CEPA/1 method is as easy to use as its canonical counterpart
or a standard DFT functional, we do consider these develop-
ments as significant progress. A detailed discussion of the
relative merits of LPNO-CEPA/1 and other local correlation
schemes has been given in refs 48 and 49.
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(12) Román-Pérez, G.; Soler, J. M. Phys. ReV. Lett. 2009, 103,
096102.

(13) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 3,
289–300.

(14) Kossmann, S.; Neese, F. J. Chem. Theory Comput. 2010, 6,
2325–2338.

(15) Grimme, S. J. Chem. Phys. 2003, 118, 9095–9102.

(16) Gerenkamp, M.; Grimme, S. Chem. Phys. Lett. 2004, 392,
229–235.

(17) Jung, Y.; Lochan, R. C.; Dutoi, A. D.; Head-Gordon, M.
J. Chem. Phys. 2004, 121, 9793–9802.

(18) Lochan, R. C.; Head-Gordon, M. J. Chem. Phys. 2007, 126,
164101–164111.

(19) Ishimura, K.; Pulay, P.; Nagase, S. J. Comput. Chem. 2006,
27, 407–413.

(20) Lambrecht, D. S.; Doser, B.; Ochsenfeld, C. J. Chem. Phys.
2005, 123, 184102–184111.

(21) Doser, B.; Lambrecht, D. S.; Kussmann, J.; Ochsenfeld, C.
J. Chem. Phys. 2009, 130, 064107-064114.

(22) Schutz, M.; Werner, H.-J.; Lindh, R.; Manby, F. R. J. Chem.
Phys. 2004, 121, 737–750.

(23) Bartlett, R. J.; Musial, M. ReV. Mod. Phys. 2007, 79, 291–
262.

(24) Shavitt, I.; Bartlett, R. J. Many-Body Methods in Chemistry
and Physics: MBPT and Coupled-Cluster Theory; Cam-
bridge University Press: New York, 2009.

(25) Janowski, T.; Ford, A. R.; Pulay, P. J. Chem. Theory Comput.
2007, 3, 1368–1377.

(26) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem.
Phys. 1987, 87, 5968–5975.

(27) Lee, T. J.; Rendell, A. P.; Taylor, P. R. J. Phys. Chem. 1990,
94, 5463–5468.

(28) Janowski, T.; Pulay, P. J. Chem. Theory Comput. 2008, 4,
1585–1592.

(29) Neese, F.; Hansen, A.; Wennmohs, F.; Grimme, S. Acc. Chem.
Res. 2009, 42, 641–648.

(30) Meyer, W. Int. J. Quantum Chem. 1971, S5, 341–348.

(31) Meyer, W. J. Chem. Phys. 1973, 58, 1017–1035.

(32) Meyer, W. Theor. Chim. Acta 1974, 35, 277–292.

(33) Ahlrichs, R.; Driessler, F.; Lischka, H.; Staemmler, V.;
Kutzelnigg, W. J. Chem. Phys. 1975, 62, 1235–1247.

(34) Ahlrichs, R.; Driessler, F. Theor. Chim. Acta 1975, 36, 275–
287.

(35) Schutz, M.; Hetzer, G.; Werner, H.-J. J. Chem. Phys. 1999,
111, 5691–5705.

(36) Hampel, C.; Werner, H.-J. J. Chem. Phys. 1996, 104, 6286–
6297.

(37) Mata, R. A.; Werner, H.-J. J. Chem. Phys. 2006, 125,
184110–184119.

(38) Maslen, P. E.; Head-Gordon, M. Chem. Phys. Lett. 1998,
283, 102–108.

(39) Subotnik, J. E.; Sodt, A.; Head-Gordon, M. J. Chem. Phys.
2006, 125, 074116-074122.

(40) Maslen, P. E.; Lee, M. S.; Head-Gordon, M. Chem. Phys.
Lett. 2000, 319, 205–212.

(41) Scuseria, G. E.; Ayala, P. Y. J. Chem. Phys. 1999, 111, 8330–
8343.

(42) Ayala, P. Y.; Scuseria, G. E. J. Comput. Chem. 2000, 21,
1524–1531.

(43) Venkatnathan, A.; Szilva, A. B.; Walter, D.; Gdanitz, R. J.;
Carter, E. A. J. Chem. Phys. 2004, 120, 1693–1704.

(44) Walter, D.; Venkatnathan, A.; Carter, E. A. J. Chem. Phys.
2003, 118, 8127–8139.

(45) Auer, A. A.; Nooijen, M. J. Chem. Phys. 2006, 125, 024104-
024114.

(46) Edmiston, C.; Krauss, M. J. Chem. Phys. 1965, 42, 1119–
1120.

(47) Meyer, W. Configuration Expansion by Means of Pseudo-
natural Orbitals. In Methods of Electronic Structure
Theory; Schaefer, H. F., III, Ed.; Plenum Press: New York,
1977; Vol. 3, pp 413-445.

(48) Neese, F.; Wennmohs, F.; Hansen, A. J. Chem. Phys. 2009,
130, 114108–114118.

(49) Neese, F.; Hansen, A.; Liakos, D. G. J. Chem. Phys. 2009,
131, 064103-064115.

(50) Pulay, P.; Saebo, S.; Meyer, W. J. Chem. Phys. 1984, 81,
1901–1905.

(51) Scuseria, G. E.; Janssen, C. L.; Schaefer III, H. F. J. Chem.
Phys. 1988, 89, 7382–7387.

(52) Scuseria, G. E.; Schaefer III, H. F. J. Chem. Phys. 1989, 90,
3700–3703.

(53) Message Passing Interface Forum. www.mpi-forum.org (ac-
cessed Oct 15, 2010).

(54) Neese, F.; Becker, U.; Ganyushin, D.; Hansen, A.; Liakos,
D. G.; Kollmar, C.; Kossmann, S.; Petrenko, T.; Reimann,
C.; Riplinger, C.; Sivalingam, K.; Valeev, E.; Wezisla, B.;
Wennmohs, F. ORCA; University of Bonn: Bonn, Germany,
2009.
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Abstract: Noncovalent interactions such as hydrogen bonds, van der Waals forces, and π-π
interactions play important roles influencing the structure, stability, and dynamic properties of
biomolecules including DNA and RNA base pairs. In an effort to better understand the
fundamental physics of hydrogen bonding (H-bonding), we investigate the distance dependence
of interaction energies in the prototype bimolecular complexes of formic acid, formamide, and
formamidine. Potential energy curves along the H-bonding dissociation coordinate are examined
both by establishing reference CCSD(T) interaction energies extrapolated to the complete basis
set limit and by assessing the performance of the density functional methods B3LYP, PBE,
PBE0, B970, PB86, M05-2X, and M06-2X and empirical dispersion corrected methods B3LYP-
D3, PBE-D3, PBE0-D3, B970-D2, BP86-D3, and ωB97X-D, with basis sets 6-311++G(3df,3pd),
aug-cc-pVDZ, and aug-cc-pVTZ. Although H-bonding interactions are dominated by electrostatics,
it is necessary to properly account for dispersion interactions to obtain accurate energetics. In
order to quantitatively probe the nature of hydrogen bonding interactions as a function of distance,
we decompose the interaction energy curves into physically meaningful components with
symmetry-adapted perturbation theory (SAPT). The SAPT results confirm that the contribution
of dispersion and induction are significant at and near equilibrium, although electrostatics
dominate. Among the DFT/DFT-D techniques, the best overall results are obtained utilizing
counterpoise-corrected ωB97X-D with the aug-cc-pVDZ basis set.

1. Introduction

Hydrogen-bonding (H-bonding) interactions, in addition to
π-π stacking interactions, provide a significant contribution
to the stability and conformational arrangement of nucleic
acids.1-5 Though it is well understood that H-bonding arises
mainly from electrostatic interactions,6 the accurate deter-
mination of attendant interaction energies has been the
subject of many theoretical studies.1-23 While H-bonding
between DNA/RNA base pairs is limited to O-H · · ·N and
N-H · · ·N bonding patterns, the O-H · · ·O motif is also

accessible with nonstandard base pairs such as the uracil
dimer.22 As a step to better understanding hydrogen bonding
in biomolecules, bimolecular complexes of formic acid
(FaOO), formamide (FaON), and formamidine (FaNN) have
been studied as prototypes for H-bonding in DNA/RNA base
pairs.

Dissociation potential energy curves of the H-bonded
complexes are governed not only by the dominant electro-
static component, but also by dispersion interactions near
equilibrium and at medium distances. While it is well
established that Hartree-Fock (HF) and density functional
theory (DFT) generally recover most of the interaction
energies in the H-bonded systems, these methods fail to
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describe dispersion interactions accurately.24-29 Reliable
computation of noncovalent interactions requires high-level
treatment of electron correlation by methods such as coupled-
cluster theory with singles and doubles including perturbative
triples, CCSD(T).30 This last approach has emerged as the
most accurate computationally affordable method that can
be applied to small systems and is considered the “gold
standard” for chemical accuracy,31 though it is unfortunately
limited by its O(N7) complexity in its standard form. To
describe noncovalent interactions in large systems, less
computationally expensive methods must be employed.

Density functional theory32 is used extensively to inves-
tigate a variety of chemical systems, as it generally requires
fewer (for nonhybrid functionals) or equivalent (for hybrid
functionals) computer resources compared to Hartree-Fock
theory and provides reasonably accurate results.32 The
application of DFT to noncovalent interactions, however, has
been hampered by the failure of most density functionals to
describe “long-range” electron correlation.24-29 Several
approaches exist for improving existing density functionals.
The addition of empirical terms to model dispersion interac-
tions (i.e., the DFT-D method) is the most popular
approach.33-39 The hybrid meta exchange correlation func-
tionals developed by Truhlar and co-workers are also
promising candidates.40-43 Truhlar’s M05-2X and M06-2X
functionals are said to account for “medium-range” electron
correlation, which is sufficient for describing the dispersion
interactions within many smaller complexes near their
equilibrium geometries.43

We have examined potential energy curves of the
FaOO-FaOO, FaON-FaON, FaNN-FaNN, FaOO-FaON,
FaON-FaNN, and FaOO-FaNN bimolecular complexes,
which we will refer to as the HBC6 test set. We present
benchmark-quality complete-basis-set (CBS) extrapolated
CCSD(T) potential energy curves for these molecules and
also assess the performance of popular DFT and DFT-D
methods. Previously, most investigations characterizing H-
bonded complexes have focused on equilibrium configura-
tions (from either geometry optimizations or crystal struc-
tures).3,21 Recently, Hobza and co-workers also studied
H-bonded complexes (formamide dimer, methylamine dimer,
and methanol dimer) along the dissociation pathway.5 The
present work significantly extends these computations by
examining five new H-bonded complexes, larger basis sets
for the coupled-cluster correction, a much more extensive
array of DFT methods, and wavefunction-based symmetry-
adapted perturbation theory (SAPT) analysis to gain ad-
ditional insight into the physical basis for attractive inter-
actions in our target complexes. The systematic study
performed here should be very helpful in elucidating the
fundamental nature of H-bonding interactions (including their
distance dependence) and in providing additional benchmark
CCSD(T)/CBS data for H-bonded systems, which we have
found necessary in independent work on parametrization of
dispersion-including DFT methods.

2. Theoretical Methods

Geometry optimizations were performed for the homoge-
neous and heterogeneous bimolecular complexes of FaOO,

FaON, and FaNN in planar hydrogen-bonded configurations.
The structures of these dimers along the dissociation
coordinate were fully optimized at the CCSD(T)/aug-cc-
pVDZ44,45 level of theory under the constraint of fixed
intermonomer distances. We defined the dissociation coor-
dinate for our systems as the distance between the central
carbon atoms of each monomer in the bimolecular com-
plexes. It is noteworthy that most of the complexes in HBC6,
particularly FaOO-FaOO and FaOO-FaNN, show double
proton transfer with “short, strong” or “low-barrier” hydrogen
bonds.46-52 Because our interest here is primarily in non-
covalent interactions and not in proton transfer reactions, we
have neglected very short intermolecular distances where the
proton transfer occurs. Single-point energy computations
along the dissociation coordinate were performed with second
order Møller-Plesset perturbation theory (MP2) using Dun-
ning’s aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis
sets,44,45 as well as CCSD(T) with the aug-cc-pVDZ and
aug-cc-pVTZ basis sets.

Estimates of the CBS limit of the CCSD(T) interaction
energies were obtained first by extrapolating to the CBS MP2
limit using the two-point extrapolation scheme of Halkier et
al.53 with aug-cc-pVTZ and aug-cc-pVQZ basis sets. Next,
we added a “coupled-cluster correction”, ∆CCSD(T), esti-
mated as the difference between CCSD(T) and MP2 in a
smaller basis set. Janowski and Pulay54 have emphasized
that basis sets beyond aug-cc-pVDZ can be important for
high-quality estimates of ∆CCSD(T), and we have recently
confirmed this for several other van der Waals dimers.16,21

In this work, the estimates of ∆CCSD(T) were evaluated
using aug-cc-pVDZ/aug-cc-pVTZ extrapolations of the MP2
and CCSD(T) correlation energies. The final CCSD(T)/CBS
estimation was obtained by summing the energies of
Hartree-Fock/aug-cc-pVQZ, the extrapolated MP2/CBS
correlation, and the estimated ∆CCSD(T) correction. All
CCSD(T) and MP2 computations were performed with the
core electrons frozen.

All geometry optimizations were performed with the
ACES II program suite,55 and single-point energy computa-
tions utilized the Molpro2009 package of ab initio pro-
grams.56 DFT computations along each curve were per-
formed using the Q-Chem 3.2 suite of programs57 utilizing
a Lebedev grid with 302 angular points for each of the 100
radial shells. This grid is larger than the default of most
electronic structure program packages, but it is necessary to
avoid artifacts due to numerical integration for noncovalent
interactions,particularlywhenusingmeta-GGAfunctionals.24,58

Energy evaluations were performed for the B3LYP,59 PBE,60

PBE0,61 B970,62 BP86,63,64 M05-2X,40 M06-2X,41,42 and
ωB97X-D39,65 functionals along with the 6-311++G(3df,3pd),
aug-cc-pVDZ, and aug-cc-pVTZ basis sets. Here, we denote
the original B97 functional as B970 to distinguish it from
the reparameterized B97 functional developed as part of the
B97-D method of Grimme,37 which has previously been
shown to perform well for potential curves of more weakly
bound van der Waals dimers.17 The empirical dispersion
correction (denoted -D2 and -D3) introduced by Grimme37,38

was added to B3LYP, PBE, PBE0, B970, and BP86 functionals.
The dispersion interaction energy (Edisp) is given by
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where sn is a global scaling factor, Cn
AB denotes the averaged

nth-order dispersion coefficient for atom pair AB, RAB is
interatomic distance of atom pair AB, and fd, n(RAB) is the
damping function. The use of a damping function minimizes
double counting of “short-range” correlation effects captured
by the density functional. In the -D2 approach, the damping
function is given by

where Rr represents the sum of atomic radii and d is a global
damping parameter that controls the “sharpness” of the damping
function. The R-6 term is the leading term in the expansion of
the dispersion energy of which higher order (R-8, R-10, ...)
terms are omitted. The empirical dispersion energies were scaled
by a global factor, s6, which is 1.05 for B3LYP, 0.75 for PBE,
0.6 for PBE0, and 1.05 for BP86, as recommended by
Grimme37 and 0.75 for B970.66,67 The damping function of
the -D3 approach is given by

where sr, n is the order-dependent scaling factor of the cutoff
radii RAB

0 . The -D3 correction was added to the B3LYP, PBE,
PBE0, and BP86 functionals. Chai and Head-Gordon’s39

ωB97X-D functional incorporates a similar R-6 dispersion term
to improve its performance for treating noncovalent complexes.
The dispersion corrected functionals will be referred to as either
DFT-D2 or DFT-D3 appropriately. Grimme’s DFT-D2 empiri-
cal dispersion correction was implemented in Q-Chem 3.2 by
two of the authors (C.D.S. and E.G.H.).

To reduce basis set superposition error, we applied the
Boys-Bernardi scheme68 to yield counterpoise-corrected
interaction energies, Ecp

int. We also obtained “relaxed” interac-
tion energies, Erlx

int, by adding to Ecp
int the deformation energies:

where EA
A - EA′

A represents the deformation energy required
to take monomer A from its equilibrium geometry to that in
the complex (and, as denoted by the superscript, this energy
difference is evaluated in the basis of monomer A). Thus,
Erlx

int denotes the counterpoise-corrected interaction energy of
the dimer relative to infinitely separated monomers in their
equilibrium geometries, whereas Ecp

int denotes the counterpoise-
corrected interaction energy of the dimer relative to infinitely
separated monomers frozen at the monomer geometries they
adopt in the dimer.

The interaction energies of the six H-bonded dimers were
computed with symmetry-adapted perturbation theory.69,70

SAPT computes the interaction in terms of individual energy
components. For the purpose of our analysis, we will group
the individual terms as

The SAPT computations have been performed with our
recently developed SAPT program.71 This program has been
implemented within the framework of PSI 3.4.72 The level
of SAPT shown above, which we will denote SAPT2+(3),
when paired with the aug-cc-pVDZ basis, can be expected
to provide energies within 0.4 kcal mol-1 of benchmark
results for systems of this size.73 All SAPT computations
have been performed under the density fitting (DF) ap-
proximation using the auxiliary aug-cc-pVDZ-RI basis.74

3. Results and Discussion

The performance of density functional methods for H-bonded
interaction energies at different distances is illustrated in
Figure 1. Relaxed, CP-corrected interaction energies vs
dissociation coordinate distance have been plotted for each
of the six complexes of HBC6 using an aug-cc-pVTZ basis
set in combination with B3LYP-D3, PBE-D3, PBE0-D3,
BP86-D3, B970-D2, M05-2X, M06-2X, and ωB97X-D and
their underlying uncorrected DFT functionals where ap-
plicable. The interaction energy curves for B3LYP-D2, PBE-
D2, PBE0-D2, and BP86-D2 can be found in the Supporting
Information. The CCSD(T)/CBS curves are also presented
for reference. Although standard DFT methods are often
thought to be reliable for describing H-bonding interactions,
it can be clearly observed that DFT methods B970, B3LYP,
and BP86 are significantly underbound, with average absolute
errors (MAEs) at the potential minima of 1.2-2.0 kcal
mol-1. In contrast, PBE-D3, BP86-D3, PBE0-D3, and
B3LYP-D3 approaches are overbound with respect to the
reference energies with MAE values of 1.6-1.8 kcal mol-1.
Surprisingly, the uncorrected PBE and PBE0 functionals
exhibit far better performance than their DFT-D counterparts,
with MAEs of 0.43 and 0.35 kcal mol-1 at their equilibrium
geometries. These two are the most accurate DFT treatments,
along with B970-D2, M05-2X, ωB97X-D, and M06-2X, all
of which yield potential minimum MAE values less than 0.5
kcal mol-1. All methods display the correct asymptotic
behavior at the dissociation limit.

Mean absolute error statistics for Erlx
int with respect to

CCSD(T)/CBS values across the entire potential energy
curves are compiled in Table 1 for the functionals examined.
All three basis sets show similar performance. The DFT
methods B970, B3LYP, and BP86 as well as the dispersion
corrected DFT methods PBE-D3, PBE0-D3, BP86-D3, and
their -D2 counterparts consistently give overall MAE values
(weighted average over six test cases, rightmost columns)
greater than 0.9 kcal mol-1 for all basis sets. M05-2X, B970-
D, ωB97X-D, and M06-2X have errors reliably less than
0.4 kcal mol-1. The best-performing functional (for relaxed
interaction energies) is M06-2X, with ωB97X-D the second-
best. The -D3 MAE for both the PBE0 and BP86 functionals

Edisp ) -∑
n

∑
AB

sn

Cn
AB

RAB
n

fd,n(RAB), n ) 6, 8 (1)

fd,n(RAB) ) 1

1 + e-d(RAB/Rr-1)
, n ) 6 (2)

fd,n(RAB) ) 1

1 + 6(RAB/sr,nRAB
0 )

, n ) 6, 8 (3)

Erlx
int ) Ecp

int + (EA
A - EA′

A ) + (EB
B - EB′

B ) (4)

Eelectrostatic ) Eelst
(10) + Eelst,resp

(12) + Eelst,resp
(13) (5)

Eexchange ) Eexch
(10) + Eexch

(11) + Eexch
(12) (6)

Einduction ) Eind,resp
(20) + Eexch-ind,resp

(20) + tEind
(22) + tEexch-ind

(22) +

δEind,resp
(HF) (7)

Edispersion ) Edisp
(20) + Edisp

(30) + Edisp
(21) + Edisp

(22) + Eexch-disp
(20) (8)
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is about 0.06-0.1 kcal mol-1 higher than the -D2 error. PBE-
D3 and B3LYP-D3 show a MAE value of 0.1-0.2 kcal
mol-1 improvement in reliability compared with their -D2
counterparts, although PBE-D3 has an error higher than 1
kcal mol-1. We note that the -D3 correction to the popular
B3LYP functional leads to overall MAEs of around 0.6 kcal
mol-1, which is not as good as the meta-GGA functionals,
ωB97X-D, or B970-D2, but better than the others.

It is also worthwhile to examine the counterpoise-
corrected interaction energies, Ecp

int (without the addition
of deformation energies), because these are somewhat
more convenient for use as benchmarks for assessing new

theoretical methods. The MAE statistics are tabulated in
Table 2, and errors with respect to the CCSD(T)/CBS
reference are plotted in Figure 2 (negative values indicate
overbinding). Our results show a considerable increase
in the error at intermolecular distances shorter than the
equilibrium distance. Most methods are overbound at
closer intermonomer distances except B3LYP, B970, and
BP86, which are highly underbound. However, the disper-
sion corrected B970-D functional is the second best
performing functional with the 6-311++G(3df,3pd) and
aug-cc-pVTZ basis sets, and the third best with the aug-
cc-pVDZ basis set. The DFT/DFT-D methods B3LYP,

Figure 1. Relaxed counterpoise-corrected interaction energies at the DFT(-D)/aug-cc-pVTZ and CCSD(T)/CBS levels of
theory.
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B970, BP86, PBE-D2/-D3, and PBE0-D2/-D3 show poor
performance for H-bonded Ecp

int, similar to the results for
Erlx

int. M05-2X, M06-2X, B970-D2, and ωB97X-D dem-
onstrate MAE values of less than 0.4 kcal mol-1, with
ωB97X-D and B970-D as the best performing. The MAE
of -D3 in the unrelaxed interaction energies for BP86 and
PBE0 is up to 0.08 kcal mol-1 higher than -D2 with
respect to CCSD(T)/CBS values. B3LYP-D3 and PBE-
D3 have improved the reliability by 0.1-0.2 kcal mol-1

from B3LYP-D2 and PBE-D2 functionals.
Our computations show that the DFT methods B3LYP,

BP86, and B970 cannot describe the H-bonding interaction
quantitatively. All three offer MAE values greater than
1.25 kcal mol-1 and across the entire test set are
significantly underbound with respect to the CCSD(T)/
CBS reference. Although these methods should be able
to describe the dominant electrostatic contributions, in
order to obtain accurate interaction energies, the long- and
medium-range dispersion contributions also need to be

added. After careful observation of the B3LYP, B970, and
BP86 error curves in Figure 2, one might suggest that
they behave as 1/R6. B3LYP-D3 and BP86-D3 compensate
for this deficiency (although they often overcompensate
at short intermolecular distances), and B970-D2 shows
excellent performance with MAE values less than 0.30
kcal mol-1. Hence, in order to accurately represent
interaction energies in H-bonded systems, the dispersion
energy contribution needs to be included. Unlike B3LYP,
BP86, and B970, our results show that standard PBE and
PBE0 are fairly reliable across the potential energy curves
for all three basis sets. The MAEs in interaction energies
for PBE and PBE0 are 0.52 and 0.40 kcal mol-1,
respectively, with the aug-cc-pVTZ basis. Since pure PBE
and PBE0 already behave well for the interaction energies
of these systems, the addition of an empirical dispersion
energy term makes PBE-D2/-D3 and PBE0-D2/-D3 worse
for interaction energies in H-bonded systems. Interaction
energy error curves for M06-2X are better than for M05-

Table 1. Errors in DFT(-D) Relaxed Interaction Energies with Respect to CCSD(T)/CBSa

mean absolute error (MAE) in kcal mol-1

Method FaOO-FaOO FaON-FaON FaNN-FaNN FaOO-FaON FaON-FaNN FaOO-FaNN HBC6 HBC6(D2)

6-311++G(3df,3pd)
B970 0.95 1.59 1.02 1.27 1.31 0.83 1.17
B3LYP 0.77 1.41 1.22 1.07 1.31 0.76 1.10
BP86 0.86 1.44 0.71 1.13 0.87 0.68 0.95
PBE0 0.50 0.44 0.78 0.44 0.51 0.50 0.53
PBE 0.36 0.55 0.80 0.32 0.34 0.44 0.47
PBE0-D3 1.07 0.69 1.75 0.88 1.23 1.31 1.15 1.09
PBE-D3 0.90 0.51 2.01 0.71 1.27 1.42 1.13 1.35
BP86-D3 0.91 0.53 1.96 0.71 1.24 0.26 1.12 1.03
B3LYP-D3 0.68 0.27 0.71 0.48 0.50 0.87 0.58 0.71
M05-2X 0.54 0.20 0.42 0.26 0.29 2.33 0.33
B970-D2 0.16 0.43 0.67 0.24 0.19 0.40 0.35
ωB97X-D 0.33 0.15 0.60 0.14 0.26 0.51 0.33
M06-2X 0.36 0.33 0.41 0.24 0.35 0.27 0.33

aug-cc-pVDZ
B970 1.00 1.53 1.01 1.27 1.28 0.81 1.16
B3LYP 0.80 1.34 1.17 1.06 1.25 0.72 1.06
BP86 0.84 1.39 0.62 1.12 0.82 0.62 0.91
PBE0 0.40 0.30 0.69 0.31 0.39 0.45 0.42
PBE 0.27 0.47 0.84 0.24 0.26 0.46 0.42
PBE0-D3 1.05 0.79 1.78 0.92 1.30 1.36 1.20 1.14
PBE-D3 0.90 0.60 2.06 0.74 1.34 1.49 1.18 1.40
BP86-D3 0.89 0.57 1.98 0.72 1.35 1.41 1.15 1.03
B3LYP-D3 0.65 0.39 0.76 0.50 0.56 0.91 0.62 0.75
M05-2X 0.38 0.38 0.50 0.14 0.41 0.24 0.34
B970-D2 0.13 0.44 0.69 0.28 0.19 0.44 0.36
ωB97X-D 0.34 0.16 0.66 0.18 0.35 0.56 0.37
M06-2X 0.26 0.29 0.32 0.10 0.22 0.25 0.24

aug-cc-pVTZ
B970 0.93 1.55 0.97 1.23 1.26 0.79 1.13
B3LYP 0.78 1.38 1.19 1.06 1.28 0.74 1.08
BP86 0.86 1.41 0.70 1.10 0.83 0.68 0.93
PBE0 0.54 0.43 0.80 0.46 0.52 0.53 0.54
PBE 0.39 0.51 0.84 0.33 0.35 0.47 0.48
PBE0-D3 1.08 0.73 1.80 0.91 1.27 1.34 1.19 1.13
PBE-D3 0.91 0.55 2.05 0.73 1.31 1.45 1.16 1.38
BP86-D3 0.92 0.57 1.99 0.75 1.27 1.41 1.15 1.07
B3LYP-D3 0.67 0.29 0.74 0.50 0.53 0.89 0.60 0.73
M05-2X 0.73 0.13 0.30 0.47 0.17 0.45 0.37
B970-D2 0.16 0.38 0.73 0.18 0.21 0.44 0.35
ωB97X-D 0.32 0.16 0.61 0.15 0.25 0.50 0.33
M06-2X 0.48 0.20 0.37 0.25 0.27 0.34 0.32

a MAEs are calculated across each potential energy curve. The column HBC6 denotes the MAEs over all six potential energy curves.
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2X, but both MAE values are under 0.40 kcal mol-1 for
all three basis sets. The best performing DFT/DFT-D
functional for unrelaxed interaction energies of the HBC6
set is ωB97X-D, which gives MAE values of 0.23, 0.19,
and 0.22 kcal mol-1 with 6-311++G(3df,3pd), aug-cc-
pVDZ, and aug-cc-pVTZ, respectively.

The HBC6 test set shows that appropriately chosen
DFT-D methods and meta-GGA methods can accurately
describe noncovalent interactions in H-bonded systems.
To further understand the nature of these H-bonding
interactions, we decompose the interaction energy to its
components (electrostatics, exchange, induction, and
dispersion) as described in eqs 5-8. We use a ternary
diagram to interpret the results of our SAPT computa-
tions.75 In a ternary diagram, each of three quantities is
represented by a vertex which denotes 100% of the
considered quantity, and the opposite side of the triangle
is 0% in that quantity. Any other value between 0% and
100% can be placed between the vertex for that quantity

and the opposite side. Figure 3 shows the ternary diagram
for the attractive components of the total interaction
energies: electrostatics, induction, and dispersion. For each
system in the HBC6 test set, we plot a dot for each
intermolecular distance R. The dots that are closer to the
electrostatics vertex belong to the large intermolecular
distances, and dots that are closer to the middle of the
diagram correspond to the shorter intermolecular distances
for each system. The colored lines correspond to the SAPT
attractive components at the minima of the FaOO-FaOO,
FaON-FaON, and FaNN-FaNN systems. It is clear that
electrostatics dominate at long range, taking over from
induction and dispersion contributions, which account for
10-40% and 10-20%, respectively, of attraction at short
to intermediate distances. This decomposition analysis
agrees with our results, in which DFT methods generally
fail to describe the interaction energies in H-bonded
systems accurately, while DFT-D methods and meta-GGA

Table 2. Errors in DFT(-D) Unrelaxed Interaction Energies with Respect to CCSD(T)/CBSa

mean absolute error (MAE) in kcal mol-1

method FaOO-FaOO FaON-FaON FaNN-FaNN FaOO-FaON FaON-FaNN FaOO-FaNN HBC6 HBC6(D2)

6-311++G(3df,3pd)
BP86 1.24 1.80 1.02 1.55 1.40 1.13 1.36
B970 1.06 1.59 1.36 1.32 1.47 1.02 1.31
B3LYP 0.90 1.44 1.56 1.16 1.49 1.01 1.26
PBE 0.44 0.93 0.30 0.71 0.46 0.25 0.52
PBE0 0.40 0.43 0.45 0.34 0.33 0.37 0.39
PBE0-D3 0.97 0.67 1.31 0.82 1.01 1.09 0.98 0.90
BP86-D3 0.51 0.25 1.27 0.35 0.76 0.79 0.65 0.61
PBE-D3 0.47 0.17 1.24 0.28 0.70 0.78 0.60 0.80
B3LYP-D3 0.56 0.28 0.35 0.41 0.32 0.60 0.42 0.61
M05-2X 0.63 0.14 0.55 0.36 0.29 0.22 0.37
M06-2X 0.35 0.20 0.34 0.21 0.27 0.20 0.26
B970-D2 0.14 0.46 0.23 0.30 0.18 0.17 0.25
ωB97X-D 0.29 0.08 0.32 0.15 0.17 0.39 0.23

aug-cc-pVDZ
BP86 1.41 1.91 1.06 1.69 1.48 1.23 1.47
B970 1.23 1.69 1.41 1.47 1.55 1.11 1.42
B3LYP 1.07 1.54 1.60 1.31 1.56 1.11 1.37
PBE 0.59 1.01 0.29 0.83 0.51 0.32 0.59
PBE0 0.33 0.51 0.42 0.33 0.30 0.34 0.37
PBE0-D3 0.82 0.59 1.28 0.70 0.95 1.02 0.89 0.81
BP86-D3 0.36 0.18 1.24 0.23 0.70 0.70 0.57 0.57
PBE-D3 0.32 0.15 1.23 0.19 0.65 0.72 0.54 0.57
B3LYP-D3 0.38 0.25 0.32 0.29 0.27 0.50 0.33 0.41
M05-2X 0.37 0.34 0.69 0.14 0.48 0.12 0.36
M06-2X 0.19 0.31 0.35 0.16 0.32 0.16 0.25
B970-D2 0.28 0.54 0.19 0.42 0.25 0.10 0.30
ωB97X-D 0.18 0.12 0.29 0.10 0.14 0.32 0.19

aug-cc-pVTZ
BP86 1.25 1.81 0.98 1.56 1.39 1.12 1.35
B970 1.06 1.59 1.30 1.32 1.44 1.01 1.29
B3LYP 0.92 1.45 1.53 1.18 1.48 1.02 1.27
PBE 0.45 0.93 0.31 0.72 0.44 0.24 0.52
PBE0 0.43 0.44 0.46 0.36 0.34 0.39 0.40
PBE0-D3 0.96 0.66 1.36 0.81 1.03 1.10 0.98 0.91
BP86-D3 0.51 0.27 1.32 0.36 0.78 0.81 0.67 0.64
PBE-D3 0.46 0.16 1.29 0.27 0.72 0.79 0.61 0.81
B3LYP-D3 0.53 0.27 0.39 0.39 0.33 0.59 0.41 0.51
M05-2X 0.75 0.13 0.44 0.48 0.20 0.34 0.39
M06-2X 0.43 0.13 0.30 0.26 0.20 0.21 0.26
B970-D2 0.11 0.42 0.29 0.27 0.14 0.18 0.24
ωB97X-D 0.27 0.09 0.33 0.13 0.15 0.36 0.22

a MAEs are calculated across each potential energy curve. The column HBC6 denotes the MAEs over all six potential energy curves.
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methods that claim to recover “medium-range” electron
correlation show success.

4. Conclusions

We have studied counterpoise corrected interaction ener-
gies (with and without deformation energy corrections)
for the HBC6 test set of H-bonded complexes. The
benchmark CCSD(T)/CBS potential curves reported here
should be helpful in testing and parametrizing new
approximate methods for noncovalent interactions and
supplement existing benchmark data which is primarily

available for potential energy minima only. DFT-D and
meta-GGA DFT methods provide significant improve-
ments over traditional density functionals for these
systems. H-bonded complexes are dominated by electro-
static influences, and thus traditional density functionals
are generally capable of computing reasonable binding
energies. However, our results have shown that the DFT
methods B3LYP, B970, and BP86 perform poorly for our
test set, while PBE and PBE0 provide accurate results.
The meta-GGA functionals and several of the DFT-D
methods perform even better, and this improvement is

Figure 2. Errors in counterpoise-corrected DFT(-D)/aug-cc-pVTZ unrelaxed interaction energies with respect to CCSD(T)/
CBS.
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ascribed to the importance of dispersion interactions at
medium range, as revealed by SAPT analysis. Thus,
although H-bonded interactions are dominated by elec-
trostatic interactions, the contribution of London dispersion
forces is not negligible in computing accurate interaction
energies.
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(1) Pitoňák, M.; Riley, K. E.; Neogrady, P.; Hobza, P. ChemP-
hysChem 2008, 9, 1636–1644.
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Abstract: A QTAIM (Quantum-Theory-Atoms-in-Molecules) and ELF (electron localization
function) topological analysis of the bonding in the recently reported molecule HCSX, X ) OH
reveals that the central carbon-sulfur bond is highly tunable, from having triple character at
one limit to being almost a single bond at the other depending on the nature of the group X.

The nature of bonding, and in particular the degree of
multiple bonding between particular pairs of atoms continues
to attract much attention from experimentalists, theoreticians,
and increasingly from groups which exploit the synergies
between both. Such an example appeared recently document-
ing the preparation, spectroscopic characterization and
theoretical analysis of the species H-CS-X (1, X ) OH).1

The focus was on the nature of the carbon-sulfur bond, and
its multiple-bonded character. The conclusion drawn from
various types of analysis of the computed wave function and
comparison with measured stretching frequencies was that
the species exhibits a “rather strong CdS double bond, or
a weak CtS triple bond”.1 In this communication, I suggest
that the multiple character of this carbon-sulfur bond can
in fact be uniquely tuned across an unusually wide range
simply by variation of the group X in 1.

The original analysis1 was based, inter alia, on comparison
of measured C-S stretching frequencies with force constants
computed at the CCSD (T)/cc-pVTZ level. Analysis of the
wave function was provided at this level by inspection of
individual molecular orbitals and localized NBO analysis of
the bond orders, and by comparison with the diatomic species
CS itself. Two methods that were not included in the original
discussion1 were those based on the topological properties
of the electron density (QTAIM)2 and analysis of the electron
localization function (ELF) η.3,4 These methods can often

provide illuminating and complementary insights into the
nature of bonding,5 and they formed the basis for a discussion
of the original article1 on Bachrach’s blog.6 The discussion
continued on this author’s own blog,7 with a formal outcome
which includes further computational analysis being pre-
sented here.

The QTAIM method identifies, inter alia, the coordinates
of a particular type of saddle-point in the electron density
distribution (F(r), which can be either computed as here, or
measured experimentally) and which is known as a bond
critical point, henceforth referred to as a BCP. Three
electronic properties at the BCP are commonly used to
characterize the nature of the bonding in this region; the value
of F(r) itself, the bond ellipticity ε8, and the Laplacian ∇2F(r).
The magnitude of F(r) varies with the degree of multiple
bonding, but it does have to be calibrated against other
systems with the same atom constituents; in other words, it
is a relative rather than absolute index. The bond ellipticity
ε, which is a measure of the deviation of the electron density
distribution from cylindrical symmetry, has also been used8

in an empirical sense to distinguish between a double bond
(for which ε has typical values of 0.4-0.8) and a triple or
single bond (where it is close to zero). The Laplacian ∇2F(r)
is a more interesting metric9 related to the kinetic and
potential energy densities at the BCP. Thus, negative values
of ∇2F(r) together with a high value for F(r) are normally
associated with a lowering of the potential energy and of
covalent character in the bonding region. Positive values for
∇2F(r) are indicative of excess kinetic energy density over
potential energy density (i.e., 2G(r) > |V(r)|, where G(r) is
the kinetic energy density and V(r) the potential energy* Corresponding author e-mail: rzepa@imperial.ac.uk.

J. Chem. Theory Comput. 2011, 7, 97–102 97

10.1021/ct100470g  2011 American Chemical Society
Published on Web 12/09/2010



density) and indicate either ionic or charge-shift character.10

Ionic bonds, which experience closed-shell Pauli (also known
as overlap or exchange) repulsions are associated with the
contraction of electrons toward an atom and a low value for
F(r) at the BCP. In contrast, charge-shift bonds retain high
values for F(r), and bond stabilization for this latter type of
bond is thought to originate from resonance terms between
charge-shifted or ionic valence-bond forms and the (poten-
tially repulsive) covalent form.10

A related approach is adopted for the (closed shell) ELF
technique.3,4,11,12 The wave function is used to compute an
electron localization function η, which is normalized between
values of 0.0 and 1.0.3 This empirical function is based on
comparing the additional kinetic energy density due to the
Pauli principle at any point with that of a homogeneous
electron gas (for which η ) 0.5). By contouring the function
at different isosurface thresholds, one can systematically
locate the domains in η, and these can then be associated
with either core electrons (which are referred to as attractors)
or the valence electrons. The diatomic valence bonding
regions are referred to as disynaptic basins (trisynaptic basins
can also exist, and correspond to three-center bonds) and
the nonbonding ones as monosynaptic basins. These basins
can then be integrated for F(r) to give an estimate of the
electron population for each bond or lone pair, and from that
an estimate of the bond order.11

The level of theory adopted here is the CCSD(T)/cc-pVTZ
coupled cluster approach used previously,1 all geometries

being fully optimized at this level using Gaussian 09.13 Full
computational details and results are available via the digital
repository entries listed in the Table 1. The AIM properties
and ELF function were computed at the CCSD level using
natural orbitals. The original ELF approach was reformulated
for Kohn-Sham wave functions by Savin et al.14 and more
recently Silvi and co-workers have presented an extension
to correlated and/or multireference methods.12 This latter
approach, implemented in the TopMod09 program has been
used here, employing the CCSD method. The results are
displayed in the online interactive Table 1 for a variety of
different substituents X for species 1, and also for three
calibrants, CH3SH, CS, and its protonated form HCtS+. The
reason for including the latter is that in the limiting case
where X is highly electron withdrawing (a good nucleofuge),
species 1 dissociates to HCS+ and X-.

HCS+ itself, being at one extreme of the series investigated
(the other extreme being CH3SH) in this analysis reveals
itself to have something close to a CtS triple bond. The
bond length for this molecule is the shortest by a significant
margin, the Wiberg bond order is almost 3, and the CtS
vibration mode at 1403 cm-1 is easily the highest (it had
been previously demonstrated1 that the CCSD(T)/cc-pVTZ
method matches experiment very well indeed in this regard).
Of the AIM indices, F(r) has a relatively high value of 0.275
au and ε is zero, as it must be for a linear triple bond. For
comparison, F(r) for ethyne calculated at the same level is
0.418 au. The triflate 1, X ) OTf, in which the S-O bond

Table 1. Calculated Properties for 1, CS, and HCS+a

system
C-S length (Å),

νCS(cm-1)b AIM: F(r)C-S; ∇2F(r), εc
ELF, C-S basin

integral (electrons)d
NBO E2 (kcal/mol),
Wiberg bond ordere digital repositoryf

HCtS+ 1.4902, 1403 0.275; +0.723, 0.00 3.53g -, 2.94 10042/to-3617
10042/to-3661

1, X ) OTf 1.4898h,1393 0.283; +0.618, 0.022h 2.60 -, -, --, 2.67 10042/to-3628
10042/to-5102

CdS 1.5505, 1269 0.276; +0.226, 0.00 2.73 -, 2.70 10042/to-3616
10042/to-5107

1, X ) F 1.5273, 1272 0.278; +0.150, 0.261 2.62 -, 2.44 10042/to-3624
10042/to-3654

1, X ) Cl 1.5352,1244 0.272;+0.163, 0.196 2.68 119.3,2.38 10042/to-3622
10042/to-3655

1, X ) HO 1.5549, 1205 0.272; -0.114, 0.380 2.62 44.0, 2.27 10042/to-3627
10042/to-3653

1, X ) H2N 1.5889, 1010/1131 0.267; -0.460, 0.459 2.39 24.5, 2.05 10042/to-5199
10042/to-5200

1, X ) CN 1.6322, 842/1040 0.250; -0.575, 0.126 1.94 17.5, 1.81 10042/to-3638
10042/to-5106

1, X ) H2B 1.7110, 814 0.221; -0.436, 0.052 1.89 6.1, 1.54 10042/to-3625
10042/to-3662

CH3SH 1.8255, 719 0.178; -0.278, 0.09 1.60 -, 1.04 10042/to-3615
10042/to-5105

a An interactive version of this table is available via the HTML version of this article. Display requires a Java-enabled Web browser, 3D
models, and 2D diagrams being invoked by clicking on any of the labeled buttons or pull-down menus in the left-hand navigation window.
The resulting Jmol display can also be controlled by a pull down menu produced by a right-mouse click in the right-hand viewing window,
from which individual coordinate files can also be acquired. b CCSD(T)/cc-pVTZ, calculated using Gaussian 09, Rev A.02. c Calculated at
the CCSD/cc-pVTZ level using natural orbitals with the programs AIMALL V. 9.10.17 (aim.tkgristmill.com/) and AIM2000 (www.aim2000.de/).
BCPs as shown as small purple spheres, and ring critical points as larger yellow spheres. The value of F(r) at the critical point is shown as
an attached label. d ELF function η calculated at the CCSD/cc-pVTZ level using CCSD(T)/cc-pVTZ geometries, with natural orbitals (density
) cc keyword) and the program TopMod09 (ref 12). The basin integrations are shown as attached labels, with the basin centroids shown as
small magenta spheres. e NBO interaction energy (kcal mol-1) between LP(carbon) and BD. / (S-X), calculated using B3LYP/cc-pVTZ wave
functions at CCSD(T)/cc-pVTZ geometries for the NBO population analysis and the Wiberg bond index of the C-S bond. f OAI-PMH
compliant Digital repository identifier, resolved as e.g. http://dx.doi.org/10042/to-2494. g Using TopMod09, a single ELF basin for the CS
bond is identified, having a centroid located along the bond, with the total basin integration shown. Using DGrid-4.5, the ELF function is
identified as a torus, with multiple basin centroids distributed around the center line of the torus but resulting in the same total integration.
h Geometry optimized at the B3LYP/cc-pVTZ level and the wave function calculated at the CCSD/cc-pVTZ level.
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is largely ionic, resembles HCS+ fairly closely (Table 1).
The substituents 1, X ) F, Cl are however significantly
attenuated from the triflate in ∇2F(r) and 1, X ) OH (the
species reported by Schreiner and co-workers1) continues
this trend. Even more extreme attenuation can be achieved
by using, e.g., the electropositive substituent 1, X ) BH2.
Here it is apparent that the C-S bond is only slightly stronger
that a pure C-S single bond as exhibited by CH3SH. The
C-S bond ellipticity ε reaches a maximum in the series for
1, X ) H2N (0.47); X ) OH is somewhat reduced (0.38)
indicating possibly the incursion of some triple bond
character with this substituent (thus the description originally
proposed1 of it having a weak CtS triple bond seems
justified).

A large and positive value for the Laplacian ∇2F(r) is
calculated for HCS+ (+0.723); this combination of large
values for both F(r) and ∇2F(r) has been suggested as a
characteristic of the charge-shift bond type recently high-
lighted by Shaik and Hiberty.10 The Laplacian ∇2F(r) across
the entire series changes from positive (+0.618 for 1, X )
TfO) to negative (-0.575 for 1, X ) CN) implying a
dramatic change in character of this bond from charge-shift
to covalent induced by a mere neutral substituent X! The
value of ∇2F(r) for 1, X ) OH (-0.114) is at the crossover
between the C-S bond having charge-shift and having
covalent character. However, one must remember that the
association between positive values of the Laplacian ∇2F(r)
and the valence-bond-computed bond stabilization deriving
from resonance terms between charge-shifted VB structures
and (more repulsive) covalent VB forms, as described by
Hiberty and Shaik,10 was largely derived from studies of
homonuclear bonds from the first row. Less is known about
such associations for second period elements such as sulfur.

To illustrate how care has to be taken in interpreting
∇2F(r), the calculated isosurface for this property contoured
at ∇2F(r) ) 0.723 (the value at the coordinate of the C-S

BCP) is shown in Figure 1a for HCS+ (an interactive version
of this and other surfaces and coordinates is available via
Table 1 in the HTML version of this article). The blue
isosurface in the figure represents the positive Laplacian and
is conventionally associated with (electrophilic) regions of
charge depletion; the red surface represents the negative
Laplacian and is associated with (nucleophilic) regions of
charge accumulation. Typically, charge depletion occurs from
the valence shells of atoms and the accumulation is found
in the bonds. The BCP for the C-S bond of HCS+ is
typically displaced along the C-S axis away from the
midpoint and toward the more diffuse distribution of
the second period sulfur atom (Figure 1, see centroids of
the purple spheres), where it encounters the charge-depleted
region of the S valence shell. The C-S bond nonetheless
does have a (red) region of charge accumulation, but this
resides much closer to the carbon atom and does not envelope
the bond-critical point. In contrast, the bond-critical coor-
dinate of the C-H bond is displaced toward the hydrogen
(reflecting the much smaller density around H and because
as a general rule the BCP tends to be closer to the more
electropositive atom of the bond), where it is contained within
the region of negative (red) Laplacian.

A wider perspective can be obtained by comparing these
results for HCS+ with other systems. Discussing first 1, X
) CN, the calculated Laplacian ∇2F(r) has a value (-0.575)
for the C-S BCP which is at the negative extreme of the
systems studied (Figure 1b). The electronic impact of
substituent X has been to move the C-S BCP coordinate
away from the sulfur, and toward the now more electropos-
itive carbon. At this position, the BCP is now contained
within the region of C-S bond charge accumulation, as
suggested by the negative sign of the Laplacian at that point.
The next system 1, X ) OH shows a value for ∇2F(r) at the
C-S BCP that is numerically small (+0.114, Figure 1c) and
which reveals more complex features for the ∇2F(r) isosur-

Figure 1. Isosurface computed at CCSD/cc-pVTZ for (a) the
computed Laplacian ∇2F(r) for HCS+ contoured at +0.723
(blue surface) and -0.723 (red surface). (b) ∇2F(r) for 1, X )
CN contoured at +0.575 (blue surface) and -0.575 (red
surface). (c) ∇2F(r) for 1, X ) OH. Purple spheres are again
indicative of the positions of BCPs.

Figure 2. Analysis of the ELF function for (a) HCS+ and (b)
HCCH. The centroids of the ELF localization domains (purple
spheres) trace out the center line of torus encircling the CS
or CC bond and (for HCS+) the terminal lone pairs. The finite
number of centroids seen in the diagram is purely a function
of the resolution chosen for the cube of ELF values.
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face. The BCP is now located in a region where ∇2F(r) is
itself changing sign (in effect ∇3F(r) is large) but the C-S
bond itself is wrapped in a (red) torus of negative charge
accumulation that spans both the bond and the adjacent lone
pairs on C and S. The final discussion in this perspective
relates to the pair 1, X ) NH2 and X ) BH2, which (at first
sight surprisingly) present rather similar ∇2F(r) values at the
C-S BCP (Table 1), despite the very different nature of the
two substituents. This is due to a combination of the shape
of the ∇2F(r) isosurface and the actual position of the BCP.
For X ) BH2, the BCP is more or less at the midpoint of
the C-S bond, displaced very slightly toward the C, whereas
with X ) NH2 the BCP is markedly displaced away from
the midpoint toward the S. This only serves to indicate that
the value of ∇2F(r) at the BCP itself may not represent the
character of the bond as a whole.

One may conclude from these trends that, unlike (homo-
nuclear) bonds between first period elements, the sign of the
Laplacian at the BCP for bonds involving a combination of
first and second period element may not necessarily represent
a simple measure of the degree of covalency or charge-shift
character in that bond.

The ELF analysis of these systems adds several further
insights to the bonding. The form of the ELF valence
localization domains for the CtS and sulfur lone pair regions
of the axially symmetric species HCS+ take the form of a
torus encircling the CS bond (Figure 2) with a radius of
∼0.33 Å and second torus of radius 0.45 Å representing the
S lone pairs. Ethyne itself4 gives an ELF torus with radius
0.48 Å (Figure 2b) for the CtC region which integrates to
a population of 5.11 electrons. The total is less than the
nominal six electrons for a triple bond because some
absorption takes place into the carbon core attractors (∼0.1
each) and the C-H basins (∼0.35 each). Integration of the
ELF torus encircling the CS bond in HCS+ for F(r) yields a
population of 3.53e, reduced from the nominal triple-bond
population of six due to relocation of ∼0.3e into the CH
basin, and ∼1.87e into the terminal sulfur lone pair region
(Figure 2a). A similar reduction is found for, e.g., N2, for
which the NtN basin population is reduced to ∼3.57e by
transfer occurring from the π region to the terminal lone
pairs (3.11e each).

If the axial symmetry is destroyed, then the ELF function
avoids the toroidal form of the localization domain, and

Figure 3. ELF basin centroids (purple spheres) and basin electron populations calculated at the CCSD/cc-pVTZ level for (a)
HCS+, (b) 1,X ) F, (c) 1,X ) OH, (d) 1,X ) NH2, (e) 1,X ) CN, and (f) 1,X ) BH2.
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instead collapses into two or more4 conventional disynaptic
basins, depending on the symmetry. For the systems 1, the
perturbation by substituent X causes the carbon-sulfur
localization domain to bifurcate into two such separate
basins, one being disynaptic and localized into the axis of
the CS bond (Figure 3). A second (formally disynaptic) basin
is more biased toward the carbon and therefore tends to being
a monosynaptic carbene “lone pair”. Several associated trends
are worth highlighting:

1. The population of the X-S basin is the most variable,
ranging from zero (a significantly ionic bond, the covalent
population being absorbed into lone pairs on X), through
0.87 (semi-ionic, X ) OH), to ∼2.1-2.2 (covalent, X )
BH2, CN).

2. The population of the disynaptic C-S basin modestly
decreases with decreasing electronegativity of X, from 2.62
(X ) F) to 1.89 (X ) BH2).

3. The population of the second “carbene” basin remains
relatively constant (1.94-2.20).

4. The sum of the C-S and “carbene” populations (4.63
for X ) OH) is rather greater than that of the original
unbifurcated triple bond C-S basin in HCS+ itself (3.53).
This is mostly due to scavenging of the sulfur lone pair
population (4.08 for HCS+ is reduced to 3.38 for X ) OH).

5. Groups such as X ) CN have a more complex interplay
between the σ and π frameworks, overall tending to an
electropositive manifestation for X.

This bifurcation (Figure 3) also now offers an opportunity
to provide some insight into why this CS bond is so tunable
across such a wide range (Table 1), from close to a triple
bond (X ) OTf) to being a single bond with X ) BH2. An
NBO analysis15 (of the DFT density) reveals the carbene
basin (“Lp” in NBO terminology) to have a hugely variable
interaction energy (Table 1) with the S-X BD* antibonding
acceptor. The geometric alignment between the axis con-
necting the C to the centroid of the carbon basin, and the
axis of the S-X bond is almost perfectly antiperiplanar; a
classic anomeric effect in fact! One might also note another
smaller anomeric alignment between the C-H bond as
acceptor and the monosynaptic basin on the sulfur as donor
(E2 interaction energy 7.8 kcal mol-1). These interactions
were not identified for comment in the original NBO
analysis.1

For some substituents such as 1,X ) OTf or F, the S-X
bond is so ionic that this term is not presented in the NBO
analysis1 (another manifestation of the absorption of the ELF
disynaptic basin away from the S-X region for these
molecules onto the monosynaptic oxy-anion lone pairs of
X, as noted earlier). In the other direction, the disynaptic
S-X bond basin integration reaches a maximum of 2.10e
for 1,X ) BH2, with a concomitant reduction to 1.89e for
the C-S bond. The actual molecule 1,X ) OH that provoked
this entire discussion is intermediate between these extremes;
the S-X basin has a small population 0.87e (typical of a
partially ionic bond) and the C-S basin integrates to 2.62e
(some way off the maximum of 3.53e for the CS toroidal
localization domain achieved by the fully ionised HCS+

itself). The reduction in the CS basin integral is due to the
bifurcation of the erstwhile triple bond basin into 2.01e that

have split off to form a carbon “lone pair”, leaving 2.62e
behind in the CS region proper. This former density is
perfectly oriented to achieve stabilization by an anomeric-
style interaction with the S-X (antiperiplanar) acceptor bond.

This mechanism thus reveals the C-S “bond” in such
systems to comprise two separate electronic components as
identified by the ELF technique, the partitioning of which
enables the high degree of tunability of the bond order. The
QTAIM properties, and in particular the Laplacian at the
C-S bond critical-point, also show considerable variation
with the nature of group X. A full valence-bond analysis of
these systems would be needed to establish if the C-S bond
exhibits charge-shift character. A search identifying other
molecules containing such tunable bonds may be a worth-
while endeavor.
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Abstract: We demonstrate that valence excited states in large molecules can be treated using
local multireference singles and doubles configuration interaction (LMRSDCI). The interior
eigenvalues corresponding to the excited states of interest are transformed and shifted to the
extrema of the spectrum by way of oblique projections and a matrix shift within a modified
Davidson diagonalization scheme. In this way, the approximate wave function associated with
the excited state of interest can be isolated independently of the lower lying roots, and residual
minimization is used for final convergence to the target eigenstate. We find that vertical excitation
energies calculated using LMRSDCI are mostly within 0.2 eV of nonlocal MRSDCI values.

1. Introduction

The characterization of molecules in their electronically
excited states finds relevance in many areas and applications
ranging from the study of photophysical and photochemical
processes in molecules to the development of solar cells in
material science. For instance, there is considerable interest
in the photophysical behavior of nucleic acid bases such as
cytosine and thymine when exposed to ultraviolet radiation,
as the resulting DNA damage may have cytotoxic/genotoxic
consequences.1,2 Separately, insight into chemical dynamics
may rely on characterization of optically dark states that are
inaccessible to photoexcitation/photoabsorption studies. While
complementary techniques such as electron impact methods
may be used to probe such states, they are impeded by
inherently low resolution. As such, theoretical methods with
capabilities beyond the characterization of the electronic
ground state are important tools in aiding the understanding
of the above-mentioned phenomena.

Indeed, many of the ab initio electronic structure methods
commonly used to study molecules in the electronic ground
state can be adapted for excited states. For example, in the

method of configuration interaction singles (CIS), the CI
Hamiltonian is diagonalized in the basis of singly excited
determinants, and the higher roots serve as approximations
to the excited states. Due to the lack of electron correlation,
the quality of CIS calculations for the excited states is similar
to that of Hartree-Fock (HF) for the ground state. Neverthe-
less, it has formed the basis for further improvements such
as the inclusion of a perturbative doubles correction
(CIS(D)),3,4 spin-flip CIS,5 and different variants of the
XCIS6,7 implementation.

Among methods that incorporate the effects of electron
correlation, time-dependent DFT (TDDFT)8,9 is one of the
most computationally affordable. The foundation for extend-
ing conventional, time-independent DFT into the time
domain is based on the Runge-Gross theorem,8 which states
the existence of a unique mapping between the time-
dependent external potential and the density of a system.
The relatively low cost of TDDFT computations facilitates
the study of larger molecules than possible with other
approaches, although there are well documented limitations
with using this approach to study (i) Rydberg-type excita-
tions, (ii) multielectron excitations, and (iii) excitations
involving charge transfer.10-13 Nevertheless, there has been
progress in describing long-range charge-transfer excitations
within DFT by imposing constraints (e.g., charge differences
between the donor and acceptor fragments) within the ground
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state formalism. The dominant Coulombic interaction be-
tween the charge transfer fragments can be correctly modeled
using this approach.14-16

Within the domain of single-determinant-based wave
function approaches, methods based on coupled cluster
theory (CC) have been used extensively for studying excited
states in small to medium sized molecules. Provided that
the HF wave function serves as a good reference for the
ground state and the excited states are single configurational
in character, low order CC-based approaches such as
equation-of-motion CC (EOM-CC)17,18 and the closely
related linear-response CC (LR-CC)19-21 are among the most
accurate approaches for treating singly excited states, yielding
excitation energies within 0.3 eV of experimental values.
While full EOM-CC and LR-CC are formally suitable for
treating all excited states, current practical implementations
of EOM-CC and LR-CC include up to the triple excitation
cluster operator, i.e., CCSDT,22,23 which scales as O(N8);
higher order formulations such as CCSDTQ24,25 are too
expensive apart from benchmarking purposes. To reduce the
cost associated with the family of CC methods, various
approximations have been introduced. For example, in the
method of CC2,26 all terms in the T̂2 equations higher than
second-order are neglected, reducing the overall computa-
tional cost to O(N5) from O(N6) in CCSD.27 CC2 excitation
energies are only slightly inferior to those of CCSD.
However, the performance of low order CC theories degrades
quickly when the ground state deviates from a single
reference description. Thus, these theories should be used
only for spectroscopic predictions near the equilibrium
geometry of molecules well described by a single reference.
The inclusion of higher order excitations, such as CCSDT
(or the cheaper CC3),28 can help to recover some static
correlation. Nevertheless, the accuracy of such single refer-
ence methods is further compromised if the excited states
are multiconfigurational in nature. Taking the example of
C2, there remains a deviation of 0.4 and 0.85 eV in the
calculated excitation energies from full configuration interac-
tion results at the CCSDT and CC3 levels of theory,
respectively.29,30 The spin-flip approach introduced by
Krylov31,32 provides one route forward within CC theory to
deal with molecules that have near degeneracies. In brief,
the model employs a high spin reference state that is well-
represented by a single determinant while the target states
are described as spin-flipping excitations from the reference
state. The success of this model has been attributed to a
balanced treatment of the targeted states.

Nevertheless, a multiconfigurational starting point for
inclusion of electron correlation is still required in situations
where the electronic structure is complex, e.g., in atoms with
open shells such as transition metals, molecules with weakly
coupled electrons such as diradicals, and photodissociation.
The treatment of these quasi-degenerate effects (static
correlation) can be handled using the complete active space
self-consistent field (CASSCF)33,34 or the less costly re-
stricted active space self-consistent field (RASSCF)35 meth-
ods to obtain a qualitatively adequate description of the wave
function. Subsequently, the dynamic electron correlation
component can be recovered using second-order perturbation

theory (CASPT236,37 or RASPT238), and calculations per-
formed with these methods (O(N5) scaling) generally yield
excitation energies within 0.2 eV of experimental values for
organic molecules.39,40 The method has also enjoyed success
in inorganic spectroscopic studies involving transition
metals.41-43 Alternatively, multireference singles and doubles
configuration interaction (MRSDCI) may be used to treat
dynamic electron correlation effects. The reference configu-
rations may be taken entirely from the preceding CASSCF
calculation or individually selected on the basis of their
contribution to the overall wave function. Just as the lowest
root corresponds to the electronic ground state in the
diagonalization of the CI Hamiltonian matrix, so the higher
roots are associated with the electronically excited states.
The accuracy of this approach has been demonstrated for
small- and medium-sized molecules44 even though a sig-
nificant drawback of the method lies in its conventionally
high computational cost (O(N6)).

To lower the overall cost and extend the approach to larger
molecules, local correlation has been implemented within
several electronic structure methods such as EOM-CCSD45,46

and CC247-50 for studying excited states and molecular
properties. For electronic excitations that are localized in
nature (i.e., not charge-transfer type excitations), it was found
to be advantageous to define an excitation domain45 that may
be predetermined via a less costly calculation, e.g., CIS. In
addition, double excitations from localized occupied orbitals
are segregated into strong and weak pairs, and computational
savings may be derived by restricting explicit correlation of
electrons to those within the strong pairs. In both the local
EOM-CCSD and CC2 implementations, the calculated
excitation energies for a range of medium-sized organic
molecules (such as propanamide and tyrosine) were found
to differ from the nonlocal calculations by less than 0.2
eV.45-47

Thus far, MRSDCI algorithms have been constructed
within a local correlation framework (LMRSDCI) only
for ground electronic states.51-56 Here, we extend our
LMRSDCI method to the treatment of valence excited states.
A modified Davidson diagonalization (DD) scheme57-60 is
used in a preliminary step to obtain a refined guess for the
wave function of the targeted excited state without explicitly
solving for the lower roots. Once an approximate wave
function is available, residual minimization via the residual
minimization method-direct inversion in iterative subspace
(RMM-DIIS)61-66 scheme is used for final convergence.
Using this protocol, we verify its efficacy for vertical
excitation energies within LMRSDCI for various molecules
(containing up to nine heavy atoms). In most cases, agree-
ment to within 0.2 eV of nonlocal MRSDCI values is
obtained. After completing this verification for the size of
molecules for which nonlocal MRSDCI excitation energies
are still calculable, we then use our LMRSDCI theory to
predict excitation energies in some large molecules for which
conventional MRSDCI could not be carried out.
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2. Theory

2.1. Local Correlation within Configuration Interac-
tion. Configuration interaction is one of the earliest methods
used to account for the effects of electron correlation. The
variational electronic wave function is written as a linear
combination of Slater determinants (or spin-adapted config-
uration state functions (CSFs)) constructed from molecular
orbitals.

where {ΨR} contains the set of reference configurations while
{Ψi

a} and {Ψij
ab} are singly and doubly excited configurations

generated by promoting electrons in the reference configura-
tions from internal orbitals {i,j} to external orbitals {a,b},
respectively. A full CI calculation that includes all possible
levels of excitations is not computationally feasible due to
the prohibitive cost. As such, truncation of the CI basis is
usually imposed at the level of double excitations since
configurations generated from higher order excitations are
not coupled directly to the reference wave function via the
full Hamiltonian.67,68 The length of the CI expansion in eq
1 may be reduced further by working within a local
correlation framework that exploits the short-ranged nature
of electron correlation. Using localized orbitals to span the
occupied and virtual subspace, the correlated electron pairs
are restricted to those in which the occupied orbitals i and j
are spatially close.51 Similarly, a correlation domain for some
occupied orbital i can be imposed to consist only of virtual
orbitals that are localized in the vicinity of i.51 Variational
minimization of the CI energy with respect to the CI
expansion coefficients in eq 1 leads to the usual
eigenfunction-eigenvalue equation, HC ) EC.

2.2. Excited States within CI. The lowest root of the
eigenvalue problem corresponds to the molecular ground
state, which can be isolated using iterative subspace projec-
tion methods like DD.69 Information on the excited states
can be similarly obtained from the higher lying roots, and
adaptations of DD (e.g., the Davidson-Liu method70) are
often used for this purpose. These implementations typically
require the concurrent extraction of several lower lying roots
or explicit orthogonalization to the lower roots, which in turn
have to be found. Since diagonalization of the CI Hamilto-
nian matrix constitutes a major component of the overall
computational cost, savings may be derived if the targeted
eigenpair can be obtained in isolation. As an alternative, the
targeted interior eigenvalue may be transformed and shifted
to the extrema of the spectrum. The incorporation of such
“shift-and-invert” methodology within DD may be ac-
complished by way of oblique projection techniques along
with a matrix shift.57-60 In the conventional implementation
of DD that uses orthogonal projection, an approximate
eigenvector of some large matrix A is extracted from a lower
dimensional subspace, V ≡ {V1, V2, ..., Vn} (the search space).
The approximate eigenvector, Ṽ, is written as a linear
combination of the search space vectors, {Vi}, which
constitute an orthonormal set.

where c ≡ {c1, c2, ..., cn}T, Ṽ ) Vc, and λ̃ is the approximate
eigenvalue.

The eigenvalue problem in eq 2b is underdetermined, but
additional constraints are imposed via the Galerkin condition,
which requires the residual r ) AṼ - λ̃Ṽ to be orthogonal to
the test space. Within orthogonal projection, the test space
is equivalent to the search space (i.e., V).

The orthogonality constraint leads to

On the other hand, the test space within oblique projection,
W, is allowed to be different from the search space, V. In
particular, by setting W ) AV and requiring that W remain
an orthonormal set,57,59,60 the corresponding Galerkin-Petrov
condition is

The low dimensional eigenvalue problem in eq 3d, trans-
formed and reduced to the determination of eigenpairs
belonging to A-1 in the space of W, may be solved directly
using conventional methods. λ̃ is the harmonic Ritz value,57

and with an appropriate choice for the matrix shift, σ,
1/(λ̃ - σ) can be transformed to the extremum of the
spectrum. In our work, the modified DD scheme utilizing
oblique projection along with a matrix shift is used as a
preliminary step to generate a refined approximation for the
wave function associated with the target eigenstate. Final
convergence is achieved via residual minimization using the
RMM-DIIS eigenvalue solver where the guess wave function
obtained earlier now serves as the secondary input. DIIS was
first developed by Pulay for accelerating SCF convergence.61-63

Later, Wood and Zunger64 and Hutter et al.65 introduced
RMM-DIIS for solving eigenvalue problems. Our imple-
mentation of RMM-DIIS follows the approach of Kresse.66

To reiterate, the hybrid scheme involves two separate steps.
First, a few iterations of a modified Davidson method are
completed to arrive at a refined guess for the target eigenstate
before it is input into the RMM-DIIS scheme for final
convergence.

ΨCI ) ∑
R

cRΨR + ∑
i,a

ci
aΨi

a + ∑
ij,ab

cij
abΨij

ab + ... (1)

Ṽ ) c1V1 + c2V2 + ... + cnVn (2a)

A(Vc) ) λ̃(Vc) (2b)

AVc - λ̃Vc⊥{V1, V2, ..., Vn} (2c)

V*(A - λ̃I)Vc ) 0 (2d)

V*AVc ) λ̃V*Vc ) λ̃c (2e)

AVc - λ̃Vc⊥W, W ≡ {w1, w2, ..., wn} (3a)

W*(A - λ̃I)Vc ) 0 (3b)

V*A*AVc ) λ̃V*A*Vc ) λ̃W*Vc ) λ̃W*A-1AVc )
λ̃W*A-1Wc (3c)

W*A-1Wc ) (1

λ̃)c (3d)
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3. Computational Details

The ground state geometries of all molecules considered in
this study were optimized within density functional theory
using the hybrid B3LYP exchange-correlation functional71

and the 6-31G** basis set. Our reported vertical excitation
energies Tv do not include zero point corrections, leading to
some systematic errors in comparing to measured excitation
energies T0, since ground state vibrational frequencies are
usually larger than excited state ones. However, the main
purpose of our work is to test the accuracy of LMRSDCI
for calculating Tv compared to nonlocal MRSDCI and to
demonstrate its efficacy in large molecules. When used in
future applications, zero-point corrections can easily be
accounted for at, e.g., the DFT-B3LYP or CASSCF level of
theory.

Quasi-degeneracies are treated using state-averaged
CASSCF, while dynamic electron correlation effects are taken
into account by second order perturbation theory (CASPT2)
and MRSDCI/LMRSDCI. These latter methods without local
truncation are meant to provide benchmarks for LMRSDCI.
All nonlocal calculations were carried out within the Molcas
7.2 quantum chemistry package.72 CASSCF and CASPT2
results were obtained within Molcas using the RASSCF and
CASPT2 modules, respectively. For the LMRSDCI calculations,
inactive orbitals were localized using the Pipek-Mezey (PM)
functional,73 while the virtual space was spanned by localized
orthogonal virtual orbitals generated using the scheme described
by Subotnik et al.74 To accelerate the convergence of the
MRSDCI expansion as determined by a CI coefficient cutoff
of 0.1 for the reference space, the active orbitals were
segregated into strongly and weakly occupied (occupation
number above 1.8 and below 0.2, respectively) and then
separately localized using the PM functional within each
set.75 In addition, Cholesky vectors76-78 were used in place
of conventional two-electron integrals. The Cholesky vectors
were generated via an incomplete Cholesky decomposition
on the two-electron integral matrix using a decomposition
threshold of 10-7.

The procedure for setting up orbital domains and other
details of our LMRSDCI implementation can be found in
our earlier work.79-85 In brief, a sphere is associated with
each molecular orbital in which a radius and a center of
charge are determined. To demarcate the extent of each
sphere, a list of atoms that contribute to the molecular orbital
via the Mulliken population scheme is drawn up. The center
of each sphere is calculated from the weighted average of
the coordinates of the contributing atoms, while the radius
is determined by taking the separation between the two atoms
that contribute most heavily to the molecular orbital. A radius
multiplier, which functions as a scaling parameter to the
radius, is assigned to each sphere. The scaled value is the
effective radius of the sphere and is necessary to allow for
a systematic variation of the thresholds used within the weak
pairs (WP) and truncation of virtuals (TOV) approximations
in our local correlation studies. For example, under the WP
approximation, two orbitals are deemed to be a weak pair if
their associated spheres do not overlap, i.e., the separation
between the spheres as given by the distance between the
centers of the spheres is larger than the sum of their

individual effective radii. Similarly, under the TOV ap-
proximation, the orbital domain of an internal orbital consists
of a restricted set of virtual orbitals. The permitted virtual
orbitals are those whose associated spheres overlap with the
sphere of the internal orbital. In our work, the spheres
associated with the internal (inactive and active) and external
(virtual) orbitals residing on nonheteroatoms (i.e., carbon and
hydrogen) were assigned a scaling factor of 1.5 and 1.2,
respectively, while spheres associated with orbitals residing
on the heteroatoms were assigned a larger scaling factor of
2.0.

For ground state MRSDCI/LMRSDCI calculations, the
lowest roots were extracted using regular DD, and conver-
gence to an energy difference less than 10-7 Hartrees
between subsequent iterations was typically reached within
30 iterations. The higher lying roots corresponding to the
excited states were isolated with the modified Davidson
method described earlier. The parameter for the matrix shift
was obtained from the corresponding eigenvalue of the
preceding CASSCF calculation. After a refined initial guess
was obtained from the modified Davidson scheme, the
approximate CI vector was used as an input for the ensuing
RMM-DIIS eigensolver. Convergence to a residual norm
below 10-4 in between iterations required about 20-40
iterations.

4. Results

We first evaluate the performance of using the hybrid scheme
described above within LMRSDCI for characterizing the
valence excited states in various organic molecules for which
some experimental data are available. We then go on to make
some predictions for excited states in other large molecules.

We first consider the gas phase electronic transitions
involving single excitations from the π (e1 g, HOMO) to π*
(e2u, LUMO) orbitals of benzene (D6h), which have been well
studied experimentally. The possible excited states are
determined from the direct product e1g X e2u giving rise to
1,3B2u, 1,3B1u, and 1,3E1u states. The singlet states are more
important due to the spin selection rule ∆S ) 0 in electric-
dipole transitions. In our work, we do not impose symmetry
on the electronic wave function. Preliminary calculations on
the ground A1g, excited B2u, and E1u states with D2h symmetry
(the highest order point group available within Molcas) reveal
that the vertical excitation energies differ from results
obtained without imposing symmetry constraints on the wave
function by less than 0.15 eV. The electronic term symbols
used above are retained nevertheless, as they are useful for
classification purposes.

For the preliminary state-averaged CASSCF calculation,
we use a valence-type [6e,6o] active space comprising the
six valence π electrons distributed among the six π and π*
orbitals. For an explicit treatment of σ-π correlation
effects,86-88 the inclusion of σ electrons and the correspond-
ing orbitals into the active space is necessary, i.e., a [12e,12o]
active space. This is especially relevant for the so-called
“ionic” B1u and E1u states, and therefore we expect some
errors here due to the exclusion of σ-π correlation. However,
our goal here is to test the local correlation approximation
for excited states and not to perform the most accurate
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possible CI calculations. The calculated vertical excitation
energies relative to the A1g ground state are summarized in
Tables 1-3.

For the lowest B2u excited state, the calculated vertical
excitation energies are within 0.25 eV of experimental
values for all levels of theory. The fact that CASSCF
results are already close to experimental values is indica-
tive of small differential correlation effects between the
ground and excited states. However, this is not the case
for the remaining “ionic” states of B1u and E1u symmetry
where the CASSCF vertical excitation energies are off
from experimental values by at least 1.7 eV. Incorporation
of dynamic electron correlation within CASPT2 and
MRSDCI improves the overall agreement with experi-
mental values. In addition, a more extended basis may be
useful in describing the diffuse character of some excited
states. The improvements in the calculated vertical excita-
tion energies for these “ionic” states are marked when
diffuse functions are included on the carbon atoms, while
similar augmentation on the hydrogen atoms has little

influence on the final results. In all cases, LMRSDCI
vertical excitation energies are within ∼0.2 eV of MRS-
DCI values.

In the following series of ketone molecules, 1-4 (Figure
1), the electronic transition arising from an excitation of
an electron in one of the nonbonding lone pairs on the
oxygen atom into the π* system (nOfπ*) is studied. For
each molecule, the active space consists of the oxygen
lone pair and the π electrons distributed among the π and
π* system. Moving across the series from 1 to 4, there
should be a concomitant decrease in the vertical excitation
energies as the π* system is stabilized due to conjugation
effects. This is captured in the calculated vertical excita-
tion energies, which are listed in Table 4. In all cases,
there is good agreement between CASPT2 and MRSDCI
values while LMRSDCI results are within 0.25 eV of
MRSDCI values.

The nature of excited states in nucleic acid bases, like
cytosine, is of interest because these molecules are the

Figure 1. Test set for the study of vertical excitation energies corresponding to the nOfπ* transition. The experimentally
determined vertical excitation energy T0 for molecule 1 is 4.49 eV.90

Figure 2. Cytosine, a nucleic acid base.

Table 1. Vertical Excitation Energies Tv (eV) from the A1g

Ground State to the B2u Excited State of Benzene As
Predicted by Various Methods and Basis Sets

basis CASSCF CASPT2 MRSDCI LMRSDCI exptl T0
89

6-31G* 4.89 5.14 5.03 4.95 4.90
6-31G** 4.88 5.13 5.05 4.96
6-31+G* 4.83 5.04 4.95 4.81
6-31++G** 4.82 5.02 4.95 4.82
6-311G* 4.87 5.10 5.05 4.95
6-311+G* 4.83 5.02 4.97 4.82

Table 2. Vertical Excitation Energies Tv (eV) from the A1g

Ground State to the B1u Excited State of Benzene As
Predicted by Various Methods and Basis Sets

basis CASSCF CASPT2 MRSDCI LMRSDCI exptl T0
89

6-31G* 8.10 6.80 6.90 7.08 6.20
6-31G** 8.08 6.79 6.90 7.08
6-31+G* 7.96 6.40 6.45 6.67
6-31++G** 7.95 6.38 6.46 6.63
6-311G* 8.06 6.80 6.92 7.03
6-311+G* 7.92 6.39 6.45 6.61

Table 3. Vertical Excitation Energies Tv (eV) from the A1g

Ground State to the E1u Excited State of Benzene As
Predicted by Various Methods and Basis Sets

basis CASSCF CASPT2 MRSDCI LMRSDCI exptl T0
89

6-31G* 9.56 7.52 7.68 7.83 6.94
6-31G** 9.54 7.47 7.61 7.82
6-31+G* 9.29 6.69 6.80 6.96
6-31++G** 9.27 6.70 6.83 7.00
6-311G* 9.41 7.45 7.64 7.80
6-311+G* 9.26 6.74 6.82 7.01

Table 4. Vertical Excitation Energies Tv (eV) for the nOfπ*
Transition in Molecules 1-4 Shown in Figure 2

basis/molecule CASSCF CASPT2 MRSDCI LMRSDCI

6-31G*
1 4.43 4.49 4.50 4.59
2 3.77 3.90 3.99 4.11
3 3.73 3.75 3.82 4.01
4 3.68 3.67 3.72 3.90

6-31+G*
1 4.43 4.45 4.52 4.61
2 3.76 3.81 3.99 4.16
3 3.71 3.71 3.81 4.03
4 3.68 3.66 3.72 3.95

6-311G*
1 4.42 4.47 4.52 4.61
2 3.74 3.86 4.01 4.12
3 3.71 3.71 3.80 3.95
4 3.65 3.61 3.74 3.93

6-311+G*
1 4.39 4.44 4.55 4.66
2 3.69 3.80 4.02 4.11
3 3.67 3.66 3.84 4.01
4 3.63 3.57 3.72 3.95
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primary chromophores that absorb UV radiation, leading to
DNA damage. The ground state molecular structure of
cytosine (Figure 2) is almost planar, with the exception of
the pyramidal nitrogen atom N1. For the preliminary state-
averaged CASSCF calculations, the choice of active space
comprised 14 electrons distributed among 10 orbitals (10 π
orbitals and two lone pair orbitals situated on N8 and O7 in
Figure 3). State averaging of the CASSCF calculation was
performed over the ground state and the three valence excited
states with equal weights. The calculated first excited state
at the CASSCF level is a πfπ* state followed by nOfπ*
and nNfπ* excited states involving the lone pair orbitals
on the heteroatoms. Tables 5-7 summarize the calculated
vertical excitation energies relative to the electronic ground
state, in which we see that the energetic ordering of the
excited states is already reproduced at the CASSCF level

for the two excitation energies that have been measured. The
vertical excitation energies calculated at the MRSDCI and
LMRSDCI levels for πfπ* and nOfπ* typically agree to
within 0.2 eV, but the agreement degrades to about 0.4 eV
for the nNfπ* state. A balanced treatment of differential
electron correlation effects is necessary for the evaluation
of reliable vertical excitation energies, and a larger correlation
domain may be necessary in this instance. Compared to the
2p lone pair on O7, the lone pair on N8 has more 2s character
and therefore may be more localized by virtue of being more
tightly bound. There is then a greater change for the electron
in N8 when going from the sp2 lone pair to a more
delocalized π* orbital.

Using a larger correlation domain for both the 2sp and
π* orbitals could give a more balanced treatment in this
instance, and we explore the effect of varying the local
truncation parameters (radius multipliers) on the calculated
vertical excitation energies using the 6-31+G* basis. The
results are summarized in Table 8, which also contains the
computational time, average domain size, and the total
number of CSFs for each calculation. While the calculated
vertical excitation energies are largely in line with values
reported in the earlier tables, a significant improvement is
seen for the nNfπ* state when less restrictive cutoffs are
used for the active orbitals (second column in Table 8) and
the discrepancy between MRSDCI and LMRSDCI vertical
excitation energies narrows to 0.17 eV. Further inclusion of
more correlated electron pairs along with the expansion of
the correlation domain (third and fourth column in Table 8)
leads to even closer agreement between the MRSDCI and
LMRSDCI values, but this is at the expense of higher
computational cost.

Finally, we apply our LMRSDCI approach to study the
nOfπ* transition in C18H36O (Figure 4), which is too costly
for a nonlocal MRSDCI treatment. The active space com-
prises four electrons (nonbonding lone pair on oxygen +
two π electrons) distributed among three orbitals (p orbital
on oxygen + π and π* orbitals). The vertical excitation
energies are listed in Table 9. The localized nature of the
nOfπ* excitation within C18H36O is similar to that of
acetone, and the calculated vertical excitation energies in
these two cases are comparable (cf. Table 4).

Figure 3. Active orbitals of cytosine.

Table 5. Vertical Excitation Energies Tv (eV) for the πfπ*
Transition in Cytosine

basis CASSCF CASPT2 MRSDCI LMRSDCI exptl T0
91,92

6-31G* 5.02 4.86 4.92 5.08 4.60
6-31+G* 4.93 4.77 4.85 5.02
6-311G* 5.03 4.87 4.92 5.10
6-311+G* 4.92 4.70 4.86 5.02

Table 6. Vertical Excitation Energies Tv (eV) for the nOfπ*
Transition in Cytosinea

basis CASSCF CASPT2 MRSDCI LMRSDCI

6-31G* 5.36 5.13 5.05 5.28
6-31+G* 5.21 4.95 4.99 5.18
6-311G* 5.34 5.11 5.08 5.30
6-311+G* 5.20 4.94 5.01 5.18

a The experimental vertical excitation energy for this transition is
not available.

Table 7. Vertical Excitation Energies Tv (eV) for the nNfπ*
Transition in Cytosine

basis CASSCF CASPT2 MRSDCI LMRSDCI exptl T0
91,92

6-31G* 5.75 5.65 5.56 5.90 5.20
6-31+G* 5.70 5.50 5.45 5.85
6-311G* 5.75 5.66 5.55 5.93
6-311+G* 5.71 5.49 5.48 5.82
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5. Conclusions

We have investigated here whether local configuration
interaction techniques can be used not only for ground states
but also for excited states. To this end, we have extended
our LMRSDCI method to solve for excited states and then
evaluated valence excited states in organic molecules using
LMRSDCI. To isolate the interior eigenvalues associated
with the excited states of interest, a two-pronged approach
was followed. First, the interior eigenvalues are transformed
and shifted to the extrema of the spectrum using oblique
projection along with a matrix shift within Davidson diago-
nalization. In this way, we obtain a refined guess for the
wave function without solving for the lower roots. Subse-
quently, residual minimization via the RMM-DIIS method
is used for final convergence toward the eigenstate of interest.
In most cases, calculated vertical excitation energies within
LMRSDCI are within 0.2 eV or better of MRSDCI values,
suggesting that good estimates for excited state energetics
in large molecules can be obtained with this method,
provided that the excitation is fairly localized in nature.
Working under the premise of local correlation, we expect
that the LMRSDCI approach will be less reliable for excited
states that are inherently diffuse (e.g., Rydberg states) and
long-ranged in nature (e.g., charge transfer states). However,
charge transfer processes that are spatially less extended
should be treatable, since the local truncation parameters such
as the radius multipliers used in our work may be tuned so
that they are large enough to include excitations to/from
nearest neighbors. This would allow us to study the shorter-
ranged charge transfer processes that would remain a
challenge for TDDFT.

We must note in closing that if a large active space is
required to model the physical problem, the preceding
CASSCF calculation can become the overall bottleneck for

the entire calculation, which will limit the applicability of
our method. Although the EOM-CC and LR-CC theories do
not suffer from this limitation, current low order implemen-
tations of these latter methods remain most suitable for
describing single electron excitations from ground to excited
states that are separately well-described using a single
configuration. Multireference methods such as the one
presented here are still necessary for all phenomena and
molecules in which near-degeneracies appear.
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Abstract: G4(MP2)-6X is developed as a composite procedure with a cost comparable to that
of G4(MP2) but performance approaching that of G4. The new procedure is a variant of G4(MP2)
that employs BMK/6-31+G(2df,p) geometries and has six additional scaling factors for the
correlation energy components. The scaling factors and HLC parameters are optimized using
the new E2 set of 526 energies, representing thermochemical properties, reaction energies and
barriers, and weak interactions. G4(MP2)-6X achieves a mean absolute deviation (MAD) from
benchmark values of 3.64 kJ mol-1 for the E2 set, compared with 4.42 kJ mol-1 for G4(MP2).
For the E0 set of 148 energies, G4(MP2)-6X gives an MAD of 3.43 kJ mol-1, compared with
3.22 kJ mol-1 for G4 and 4.03 kJ mol-1 for G4(MP2). The new G4(MP2)-6X procedure thus
uses extra parametrization to provide a G4-type performance without incurring G4-type
computational costs.

1. Introduction

Composite quantum chemistry methods1 enable the accurate
prediction of thermochemical properties at reduced cost in
terms of computing resources. A variety of such procedures
have been developed, including the Gaussian (Gn) proce-
dures,2 the complete-basis-set (CBS) methods,3 and the
Weizmann (Wn) procedures.4 These methods range from
highly accurate at modest computational cost to exceptionally
accurate at much higher expense. For instance, G4 achieves
a mean absolute deviation (MAD) from experimental values
of 3.47 kJ mol-1 (0.83 kcal mol-1) for the G3/05 set5 of
454 energies, using MP2, MP4, and CCSD(T) component
calculations of moderate individual cost. At the other end
of the spectrum, by employing coupled cluster calculations
up to CCSDTQ5, W44c gives an MAD of just 0.42 kJ mol-1

(0.1 kcal mol-1) for the W3 set4b of 36 energies.
For many chemical systems of medium size, the Wn

procedures, and to some extent the Gn procedures, are still
prohibitively expensive. To address this problem, the Gn-
(MP2) procedures have been formulated.6 These variants of
Gn are less computationally demanding and are therefore

applicable to a much wider range of systems. The trade-off
for the reduced computational requirements is that the
Gn(MP2) procedures are somewhat less accurate than the
Gn methods. For example, G4(MP2)6c has an MAD of 4.35
kJ mol-1 (1.04 kcal mol-1) for the G3/05 set, compared with
3.47 kJ mol-1 for G4.

The broader-ranging applicability of G4(MP2) makes it
attractive to seek further improvement in its performance.
Is it feasible to achieve G4-type performance while retaining
G4(MP2)-type computational cost, perhaps through ad-
ditional parametrization? In the present study, we examine
various modifications of G4(MP2) with this end in mind and
propose G4(MP2)-6X as a cost-effective improved procedure.

2. Computational Details
Standard ab initio molecular orbital theory and density
functional theory (DFT) calculations7 were carried out with
the Gaussian 03,8 Gaussian 09,9 Molpro 2006,10 and Psi 311

programs. Unless otherwise noted, geometries were opti-
mizedwith theBMK12DFTprocedureusingthe6-31+G(2df,p)
basis set. In specific cases, zero-point vibrational energies
(ZPVEs) and thermal corrections to enthalpy (∆H) at 298
K, derived from scaled BMK/6-31+G(2df,p) frequencies,
were incorporated into the total energies.13,14 Single-point
energies were obtained at the HF, MP2, and CCSD(T) levels
for the composite procedures. Unless otherwise noted,

* Corresponding authors e-mail: chan_b@chem.usyd.edu.au;
radom@chem.usyd.edu.au.

† Current address: Research School of Chemistry, Australian
National University, Canberra, ACT 0200, Australia.

J. Chem. Theory Comput. 2011, 7, 112–120112

10.1021/ct100542x  2011 American Chemical Society
Published on Web 12/08/2010



energies are reported in kilojoules per mole. In order to
maximize both the accuracy and precision of the new
procedures, i.e., to minimize the deviations (maximize
accuracy) and the variations in the deviations (maximize
precision), we simultaneously minimize the mean absolute
deviation (MAD) from the benchmark values, and the
standard deviation (SD) of the deviations. Preliminary
calculations indicate that this is advantageous compared with
the typical approach of minimizing the MAD alone. Thus,
the MAD/SD procedure leads to a lower SD and yields fewer
outliers (deviations > 8.37 kJ mol-1 (2 kcal mol-1)) without
changing the MAD by more than 0.01 kJ mol-1. In the
course of these investigations, we have briefly examined
various approaches for the simultaneous minimization of the
MAD and SD, including minimizing the mean of the MAD
and SD values [1/2 × (MAD + SD)], their root-mean-square
value [2-1/2 × (MAD2 + SD2)1/2], and their harmonic mean
[2 × (MAD-1 + SD-1)-1]. We find that the three averaging
procedures give very similar results, and we have chosen
for simplicity to use the mean of MAD and SD in our
parametrization processes.

3. Theory

3.1. Description of G4(MP2). The G4(MP2) procedure
seeks to approximate a high-level energy (CCSD(T) with a
large basis set) through the use of a series of lower-level
energies and an additivity scheme. While the details of the
theory have been described in the original paper,6c we
provide here a brief summary for comparison purposes. The
G4(MP2) energy is obtained in the following manner:

• The geometry is obtained at the B3-LYP/6-31G(2df,p)
level.

• HF/CBS is an estimate of the Hartree-Fock-limit energy
and is obtained by extrapolation to the complete-basis-set
limit with aug-cc-pV(n+d)Z (n ) T, Q) basis sets modified
by reducing the number of diffuse and polarization functions,
using the formula ECBS ) [EQ - ET exp(-1.63)]/[1 -
exp(-1.63)].

• The frozen-core approximation is employed for all
correlation calculations. More specifically, the largest noble-
gas core is frozen, except that the following are treated as
valence orbitals:
o 3d orbitals on third-row main-group elements (Ga-Kr)
o 2s and 2p orbitals on Na and Mg and 3s and 3p orbitals

on K and Ca
• EMP2

corr is the MP2 correlation energy (i.e., EMP2 - EHF),
calculated with the G3MP2LargeXP basis set.

• ∆ECCSD(T) is the CCSD(T) correlation energy beyond
MP2 (i.e., ECCSD(T)

corr - EMP2
corr), calculated with the 6-31G(d)

basis set.
• HLC is a higher-level-correction term that depends on

the number of R and � valence electrons (nR and n�). It is
obtained with parameters (A, A′, B, C, D, and E, mHartree)
optimized using the G3/05 set:

o -A n� for closed-shell molecules
o -A′ n� - B (nR - n�) for open-shell molecules
o -C n� - D (nR - n�) for atomic species
o -E n� for “single electron pair” species (e.g., Li2)
o A ) 9.472, A′ ) 9.769, B ) 3.179, C ) 9.741, D )

2.115, E ) 2.379
• The zero-point vibrational energy (ZPVE) and thermal

corrections to enthalpy are obtained with scaled (0.9854) B3-
LYP/6-31G(2df,p) frequencies.

• A spin-orbit correction (ESO), where available from
experimental results or from accurate calculations, is included.

The sum of the first three terms in eq 1, HF/CBS + EMP2
corr/

G3MP2LargeXP + ∆ECCSD(T)/6-31G(d), is designed to ap-
proximate the electronic energy at the CCSD(T)/CBS level.
The HLC, through parametrization to experimental data, is
used to compensate for the remaining deficiencies in the
theory and in the additivity scheme.

The form of G4(MP2) indicates several components that
determine its accuracy. Needless to say, an important factor
is the quality of the electronic structure methods that are
used for geometry optimization and in the approximation of
CCSD(T)/CBS. The HLC has no effect on the energy of
reactions that involve closed-shell reactants and closed-shell
products. However, for radical reactions and some properties
such as heats of formation, ionization energies, and electron
affinities, the HLC can substantially improve the result. Thus,
both the form of the HLC and the experimental data
employed in the fitting are important for many properties
and reactions.

3.2. G4(MP2)-6X: An Alternative Composite Procedure.
While the use of the HLC in G4(MP2) is generally very
successful in improving the prediction of thermochemical
properties, other approaches have also been employed to
improve the performance of a simple additivity scheme. For
instance, the G3S15 and MCCM/316 procedures scale the
energy of the various components in the additivity scheme,
in place of using HLC corrections. In the present study, we
introduce the G4(MP2)-6X procedure, which includes such
scaling as well as other modifications designed to provide
an improvement to G4(MP2) but without significantly
affecting the computational cost.

G4(MP2)-6X has six extra parameters that are independent
of the number of electrons, in addition to the six HLC
parameters in the original G4(MP2). These are introduced
in the hope that they will not only improve the general
accuracy of the procedure but also provide an improvement
in the cases where the HLC does not contribute to the relative
energies as, for example, for barriers for closed-shell
reactions.

The form of the six additional parameters is loosely based
on the G3S procedure,15 where the correlation contributions
for MP2, CCSD, and the perturbative triples correction (T)
are separately scaled. In addition, we make use of a modified
MP2 method, namely, SCS-MP2, which has been found by
Grimme to show improved performance over standard
MP2.17 This is achieved by splitting the MP2 correlation
energy (EMP2

corr) into opposite-spin (OS) and same-spin (SS)
contributions and applying individual scaling to the two
components.17 In G4(MP2)-6X, we also scale the OS and

G4(MP2) ) HF/CBS + EMP2
corr /G3MP2LargeXP +

∆ECCSD(T)/6-31G(d) + HLC + ZPVE + ESO

(1)

G4(MP2)-6X J. Chem. Theory Comput., Vol. 7, No. 1, 2011 113



SS contributions to EMP2
corr separately. With a similar philoso-

phy to that for SCS-MP2, Sherrill and co-workers have
introduced the SCS-CCSD method.18 However, our prelimi-
nary investigations show that separate scaling of the OS and
SS contributions to the CCSD correlation energy, in the
context of G4(MP2)-type procedures, does not lead to a
noticeable improvement, and we therefore do not apply SCS-
CCSD to G4(MP2)-6X. Finally, we use an improved
procedure for geometry optimization (BMK/6-31+G(2df,p)).
The description of the G4(MP2)-6X procedure is then as
follows:

• The geometry is obtained at the BMK/6-31+G(2df,p)
level.

• HF/CBS is obtained in the same manner as for
G4(MP2).19

• The following correlation energies are obtained with the
G4 frozen core:
o c1 ·EMP2OS

corr and c2 ·EMP2SS
corr are the scaled OS and scaled

SS contributions to the MP2/6-31G(d) correlation energy,
respectively.
o c3 ·EMP2OS

corr ′ and c4 ·EMP2SS
corr ′ are the scaled OS and scaled

SS contributions to the MP2/G3MP2LargeXP correlation
energy, respectively.
o c5 ·ECCSD

corr is the scaled CCSD contribution to the
CCSD(T)/6-31G(d) correlation energy.
o c6 ·E(T)

corr is the scaled perturbative triples contribution to
the CCSD(T)/6-31G(d) correlation energy.

• ESCS-MP2
corr /G3MP2LargeXP ) c3 ·EMP2OS

corr ′ + c4 ·EMP2SS
corr ′

• ∆ES-CCSD/6-31G(d) ) c5 ·ECCSD
corr - (c1 ·EMP2OS

corr +
c2 ·EMP2SS

corr )
• ES-(T)

corr /6-31G(d) ) c6 ·E(T)
corr

• c1, c2, c3, c4, c5, and c6 are parameters optimized using
the E2 training set; see section 3.3 for details of E2.

• The HLC has the same form as that for G4(MP2), but
the HLC parameters are reoptimized.

• Scaled BMK/6-31+G(2df,p) frequencies are used to
obtain the ZPVE (0.9770) and thermal corrections to enthalpy
(0.9627).13,14

• The same spin-orbit contribution as in G4(MP2) is
included.

A script for running G4(MP2)-6X calculations using
Gaussian 09 is included in the Supporting Information.

We note that several singlet species (C2, Be2, and CN+)
among our training sets exhibit RHF to UHF instabilities.
This suggests that they have substantial biradical character
and are not adequately described by the RHF wave functions.
We find that in these cases, the use of an unrestricted wave
function leads to improved agreement with benchmark
thermochemistry. However, the broken-spin-symmetry UHF
wave functions in these cases are found to be highly spin-
contaminated. While the improvements with UHF are
encouraging, a multireference treatment is likely to help
further. Nonetheless, it is advisible that an initial stability

test on the reference wave function be conducted to identify
potential problems of this type, and to provide some
improvement.

3.3. Training and Test Sets. In developing new com-
posite procedures, training sets are employed to optimize the
empirical parameters, while test sets are used to evaluate
their performance. There are numerous training and test sets
that have been previously used. For example, the G3/05 set5

employed for the parametrization of the HLC in G4(MP2)
comprises 270 heats of formation, 105 ionization energies,
63 electron affinities, 10 proton affinities, and six hydrogen-
bond energies. On the other hand, the performance of W4
was assessed with the W3 set4b of 36 atomization energies.

While the above and many other training and test sets
consist of data for general thermochemistry, there have also
been a number of specialized sets developed for specific
energy properties, such as barriers and weak interactions.
Thus, the DBH24 set20 consists of 24 barriers, obtained at
the W1-W4 levels of theory, for a diverse range of reaction
types. These include hydrogen abstractions, SN2 reactions,
hydrogen transfers, and unimolecular decompositions. Using
W2 calculations, Boese et al. have compiled a hydrogen-
bonding set of 16 complexes21 (referred to as the HB16 set
hereafter), while the WI9/04 set22 comprises complexation
energies for nine weakly bound complexes, calculated at the
W1 level. Very recently, the GMTKN24 data set has been
proposed,23 which comprises subsets of a diverse range of
24 chemical test sets, encompassing thermochemistry, kinet-
ics, and noncovalent interactions. The GMTKN24 set
contains 731 energies.

In this study, we propose two new training and test sets
that include a variety of thermochemical properties. They
are termed the “energy sets” E0 and E2 and contain 148
and 526 energies, respectively. These sets contain experi-
mental and theoretical energies of chemical accuracy. We
use the E0 set for evaluating methods for geometry optimiza-
tion and the E2 set for training the G4(MP2)-6X procedure.
We also examine the use of the “traditional” and moderately
sized G2/97 set (302 energies) for parametrization.24 The
details of the training and test sets are given below.

The E0 set is a selected subset of highly accurate
theoretical data presented recently by Karton et al.25 It
contains atomization energies (AE, W4/08), barriers (∆H‡,
DBH24), hydrogen-bond energies (HB, HB16), and energies
for weakly bound complexes (BE, WI9/04):

Shown in parentheses are the number and the specification
of the energies, and the methods by which they are obtained.
W3+ and W4+ signify theoretical values obtained with
procedures of at least W3 and W4 quality, respectively.

While the details of the G2/97 set have been given
elsewhere,24 we provide here a brief summary for comparison
purposes. It consists of experimental data for heats of
formation (∆Hf), ionization energies (IEs), electron affinities
(EAs), and proton affinities (PAs):

G4(MP2)-6X ) HF/CBS + ESCS-MP2
corr /G3MP2LargeXP +

∆ES-CCSD/6-31G(d) + ES-(T)
corr /6-31G(d) +

HLC + ZPVE + ESO

(2)

E0(148) ) W4/08 (99, 0 K, W4+)
+ DBH24 (24, vibrationless, W3+)
+ HB16 (16, vibrationless, W2)
+ WI9/04 (9, vibrationless, W1)
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For the IE of CN in this set, an alternative experimental
value26 (14.03 ( 0.02 eV, 1353 kJ mol-1) has been
recommended on the basis of W1 and W2 calculations.27

We have adopted this value in the present study.
Our largest set is the E2 set, which is comprised of the

E0 set, a modified G2/97 set termed G2/97′, and the new
E1 set:

The G2/97′ set reduces the number of heats of formation
from 148 (in G2/97) to 94. The new heats of formation set
in G2/97′ is simply termed G2/97′ ∆Hf. The reduction in
the number of data is done to remove redundancies in the
final E2 set, as 54 of the 148 molecules in G2/97 are also
present in the W4/08 set. Thus, the G2/97′ set is defined as

The E1 set consists of 73 heats of formation from the G3/
99 set28 that are not present in G2/97, calculated enthalpies
for 49 radical reactions of Coote et al.29 (referred to hereafter
as RR49), and a subset (referred to as PR8) of the pericyclic
reaction set of Houk et al.30

G3/99 introduces 75 additional ∆Hf values to G2/97, of
which two are already present in the W4/08 set. Removal
of this duplication leads to the G3/99′ ∆Hf set. The RR49
set comprises enthalpies calculated at the W1 level for 21
radical-addition (ADD) and 28 hydrogen-abstraction (ABS)
reactions. Houk et al.’s pericyclic reaction set consists of
experimental values for 11 barriers and 7 enthalpies for 11
pericyclic reactions. However, due to uncertainties in the
experimental values, we choose to employ a subset of eight
barriers, for which W1 vibrationless values are available.25

The E1 set is thus defined as

4. Results and Discussion

We have optimized the parameters for G4(MP2)-6X using
our largest E2 set (Table 1). We note that most of the HLC
parameters for G4(MP2)-6X are smaller than their G4(MP2)
counterparts. This is advantageous because it means that the
new method is less reliant on the HLC than the original
implementation. It has been pointed out that the form of HLC
in G4(MP2), specifically the use of different values for A
and A′ for closed- and open-shell species, can lead to a
diverging error for radical reactions.29,31 However, the
difference between A and A′ for G4(MP2)-6X (0.091) is
substantially smaller than that for G4(MP2) (0.297). As a

result, the problem of a diverging HLC contribution to radical
reactions is significantly reduced for the new procedure.

In the following sections, we will first examine the
performance of various methods for geometry optimization.
Next, we will evaluate the new parameters in G4(MP2)-6X
and assess their importance in improving the new procedure.
We will then look at the performance of G4(MP2)-6X in
comparison with G4(MP2), as well as discuss the portability
of the popular G2/97 training set by testing the G2/97-trained
procedure on the larger and more diverse E2 set. We will
conclude our discussion by providing a more detailed
analysis of the strengths and shortcomings of G4(MP2)-6X.

4.1. The Choice of Geometry. In the formulation of G4,
Curtiss et al. have identified cases where closer agreement
with benchmark energies can be achieved by using proce-
dures for optimizing the geometry other than the default B3-
LYP/6-31G(2df,p) method.2d For instance, the use of
MP2(Full)/6-31G(d) geometries improves the IEs for CH4,
BF3, and BCl3, while hydrogen-bond energies are improved
by using B3-LYP/6-31+G(2df,p) geometries.

While the use of MP2 for geometry optimization may be
desirable in some cases, it can become too costly to be
employed for routine computations for larger systems, and
it can also fail for open-shell systems for which there is
significant spin contamination. We therefore focus on the
use of alternative DFT procedures with various basis sets
for obtaining geometries. In particular, we examine the
performance of the BMK12 and M06-2X32 procedures in
combination with the 6-31+G(d,p), 6-31G(2df,p), 6-31+
G(2df,p), and 6-311+G(2df,p) basis sets for geometry
optimization. We then calculate single-point energies at the
G4(MP2) level on these geometries. We use the E0 test set
for our assessment, as it contains not only standard mol-
ecules, but also transition structures and hydrogen-bonded
and weak complexes, which can be expected to be chal-
lenging in terms of obtaining reliable geometries. The MAD
values for the E0 set and its subsets, for the various
procedures used for geometry optimization, are shown in
Table 2.

We find that, for the full E0 set and with the largest
6-311+G(2df,p) basis set, both BMK (4.00 kJ mol-1) and
M06-2X (4.24 kJ mol-1) lead to lower MADs than B3-LYP
(4.34 kJ mol-1). We can see that this is also true for the
subsets of E0, with the exception of the W4/08 set, for which
the MADs for BMK and M06-2X are 0.29 and 0.63 kJ
mol-1, respectively, higher than that for B3-LYP. For BMK,
we find that the MAD generally becomes smaller as the size
of the basis set is increased. On the other hand, the basis set

G2/97(302) ) G2/97∆Hf (148, 298 K, expt)
+ G2/97 IE (88, 0 K, expt)
+ G2/97 EA (58, 0 K, expt)
+ G2/97 PA (8, 0 K, expt)

E2 (526) ) E0 (148) + G2/97′ (248) + E1 (130)

G2/97′(248) ) G2/97′∆Hf (94, 298 K, expt)
+ G2/97 IE (88, 0 K, expt)
+ G2/97 EA (58, 0 K, expt)
+ G2/97 PA (8, 0 K, expt)

E1(130) ) G3/99′∆Hf (73, 298 K, expt)
+ ADD (21, 0 K, W1, part of RR49)
+ ABS (28, 0 K, W1, part of RR49)
+ PR8 (8, vibrationless, W1)

Table 1. Optimized HLC (A-E, mHartree) and Scaling
(c1-c6) Parameters for G4(MP2)-6Xa

G4(MP2)b G4(MP2)-6X G4(MP2)-6X

A 9.472 7.173 c1 1.327
A′ 9.769 7.264 c2 0.403
B 3.102 3.677 c3 1.249
C 9.741 7.239 c4 0.486
D 2.115 2.404 c5 1.077
E 2.379 1.021 c6 0.824

a Parameterized with the E2 set. See section 3.2 for the
definition of the parameters. b Reference 6.
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dependence for M06-2X is more erratic, with the lowest
MAD for the E0 set being achieved with the smallest
6-31+G(d,p) basis set, and the largest MAD for the
intermediate-sized 6-31G(2df,p) basis set. For the subsets
of E0, we can also see a more systematic basis set effect for
BMK than for M06-2X.

While both BMK and M06-2X appear to provide superior
geometries compared with those of B3-LYP, the somewhat
lower MAD for BMK, and the seemingly more predictable
basis set effect, have led us to favor BMK as our method of
choice. In addition, it has previously been found that the
use of BMK geometries improves the agreement with
experimental thermochemical data for G3.33 Turning our
attention to the choice of basis set, the use of 6-31+G(2df,p)
gives an overall MAD (4.03 kJ mol-1) that is only slightly
greater than that for the larger 6-311+G(2df,p) basis set (4.00
kJ mol-1). However, further reduction in the basis set size
to 6-31G(2df,p) or 6-31+G(d,p) leads to larger increases in
the MAD (to 4.28 and 4.35 kJ mol-1, respectively). Thus,
we have chosen BMK/6-31+G(2df,p) as the method for

geometry optimization in the G4(MP2)-6X procedure. We
note that the use of 6-31+G(2df,p), compared with the
smaller 6-31G(2df,p) basis set employed in G4(MP2), will
lead to a slightly more expensive procedure. However, the
geometry optimization generally contributes only a small part
to the total computational cost in a G4(MP2)-type calculation,
and this is therefore a cost-effective improvement.

4.2. Components of G4(MP2)-6X and Their Contribu-
tions. Having determined the appropriate procedure for
geometry optimization, we now proceed to examine the
various approaches for scaling the correlation energies used
in G4(MP2), and how they affect the performance of the
modified procedures. The results are summarized in
Table 3.

We can see that, when compared with G4(MP2) with the
default B3-LYP geometries (column I), the use of BMK for
geometry optimization (column II) gives a comparable MAD,
a reduced SD, and three less outliers.34 Reoptimization of
the HLC parameters leads to a lower MAD and SD (column
III). When one adds a single set of scaling parameters (c1
and c2) for the OS and SS components for the MP2
correlation energy (EMP2

corr), the MAD and SD are further
lowered (column IV). However, the biggest improvement
accompanying this change can be seen for NO, where the
number of outliers is substantially reduced from 68 to 59. A
slight improvement in performance can be achieved when
one scales c5 and c6 (instead of c1 and c2) for the CCSD
and (T) correlation energies, respectively (column VI).
Introducing different scaling parameters for the two sets of
EMP2

corr, i.e., c1 and c2 for EMP2
corr/6-31G(d) and c3 and c4 for

EMP2
corr/G3MP2LargeXP, leads to a larger improvement (col-

umn V). Finally, when one applies scaling to all six
components, one arrives at the full G4(MP2)-6X procedure
(column VII), with the lowest values for the MAD (3.64 kJ
mol-1) and SD (5.14 kJ mol-1), and with a significant
reduction also in the number of outliers to 44.

4.3. Performance of G4(MP2)-6X. Table 4 summarizes
the statistics for the E2 test set for G4(MP2), and for
G4(MP2)-6X when parametrized with the G2/97 and E2
training sets. We can see that G4(MP2) gives a respectable
MAD of 4.42 kJ mol-1, and an SD of 6.38 kJ mol-1. The

Table 2. Mean Absolute Deviations (MADs, kJ mol-1)
from Benchmark Energies As a Function of Methods
Employed for Geometry Optimization for G4(MP2)a

6-31+G
(d,p)

6-31G
(2df,p)

6-31+G
(2df,p)b

6-311+G
(2df,p)

W4/08 B3-LYP 4.36 4.47
BMK 4.98 4.90 4.72 4.76
M06-2X 4.95 4.99 5.09 5.10

DBH24 B3-LYP 5.71 5.75
BMK 3.51 3.05 2.91 2.72
M06-2X 2.65 2.93 2.69 2.60

HB16 B3-LYP 3.17 1.92
BMK 1.91 2.85 1.76 1.74
M06-2X 2.15 3.47 2.08 2.03

WI9/04 B3-LYP 4.09 3.47
BMK 3.88 3.26 3.35 3.20
M06-2X 2.89 4.32 2.90 3.08

E0 B3-LYP 4.43 4.34
BMK 4.35 4.28 4.03 4.00
M06-2X 4.15 4.45 4.24 4.24

a Literature scale factors were employed for obtaining ZPVEs
and ∆H. b The appropriate scaling factors for the 6-31+G(2df,p)
basis set are taken as the average of the values for 6-31G(2df,p)
and 6-311+G(2df,p); see ref 14 for more details.

Table 3. Performance of Various Modifications for G4(MP2) on the E2 Seta

I II III IV V VI VII

Geometryb B3-LYPc BMK BMK BMK BMK BMK BMKd

HLC default default fitted fitted fitted fitted fitted
c1 1 1 1 fitted fitted 1 fitted
c2 1 1 1 fitted fitted 1 fitted
c3 1 1 1 ) c1 fitted 1 fitted
c4 1 1 1 ) c2 fitted 1 fitted
c5 1 1 1 1 1 fitted fitted
c6 1 1 1 1 1 fitted fitted
MDe -0.49 -0.39 -0.37 0.08 -0.15 -0.40 -0.26
MADf 4.42 4.39 4.18 3.99 3.77 3.82 3.64
LDg -41.61 -42.17 -38.14 -37.79 -39.41 -37.45 -36.66
SDh 6.38 6.05 5.88 5.61 5.41 5.47 5.14
NOi 70 67 68 59 55 56 44

a Parameterized with the E2 set. See section 3.2 for the definition of the parameters. All energies in kJ mol-1. b The 6-31G(2df,p) basis
set was used for B3-LYP, while BMK employs 6-31+G(2df,p). c This set of parameters represents the original G4(MP2). d G4(MP2)-6X.
e Mean deviation. f Mean absolute deviation. g Largest deviation. h Standard deviation. i Number of outliers (absolute deviation > 8.37 kJ
mol-1).
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largest deviation is -41.61 kJ mol-1, and there are 70
outliers (i.e., where the error is larger than 8.37 kJ mol-1 (2
kcal mol-1)) among the 526 entries. In addition, we find
that G4(MP2) performs well for all three subsets of E2.

When G4(MP2) is compared with G4(MP2)-6X (param-
etrized with E2), we can see that G4(MP2)-6X gives lower
MAD and SD values overall, as well as for the individual
subsets. The new procedure also produces fewer outliers for
E2 and for the subsets. We find that G4(MP2)-6X performs
only slightly better for the G2/97′ set, but there are major
improvements for the E0 and E1 sets. For example, the MAD
for the E0 set is improved by 1.15 kJ mol-1, the SD is
lowered by 2.11 kJ mol-1, and the NO is reduced by 12.
Thus, the inclusion of the six additional parameters improves
the accuracy and precision for a wide range of systems, and
these improvements come at effectively no additional
computational cost. Notably, when trained by either the G2/
97 or the E2 sets, G4(MP2)-6X achieves chemical accuracy
with MADs of 3.85 kJ mol-1 (0.92 kcal mol-1) and 3.64 kJ
mol-1 (0.87 kcal mol-1), respectively.

A comparison of the performance of the G2/97-param-
etrized G4(MP2)-6X with that parametrized using E2 reveals
that the E2-parametrized method gives lower overall MAD,
LD, SD, and NO values. When the statistics for the three
component sets of E2 are examined, namely, E0, G2/97′,
and E1, we find that the E1 set is the prime beneficiary of
the parametrization with the E2 set, with notably reduced
MAD and SD values. The E2-parametrization also gives
better statistics for the E0 set, while the performance for the
G2/97′ set is slightly worse, presumably due to the reduced
weight of G2/97 properties in the E2 set.

While parametrization of G4(MP2)-6X with the E2 set
leads to superior performance compared with fitting to G2/
97, parametrization with the latter is not far behind, with an
MAD and SD that are less than 0.5 kJ mol-1 higher than

the E2-parametrized values. Importantly, the G2/97 set
appears to be very portable: using it for parametrization gives
uniformly reasonable results for E0 (MAD ) 3.81 kJ mol-1)
and E1 (3.44 kJ mol-1) as well as for the G2/97′ set (4.09
kJ mol-1). This demonstrates that G2/97 can be used as a
cost-effective training set for preliminary screening in the
formulation of composite procedures.

When a procedure is developed by fitting a sizable number
of parameters over a particular training set, one potential
pitfall is that the resulting method may not be applicable to
properties and systems that are not included in the training
set. In this connection, our finding of comparable perfor-
mance for the G4(MP2)-6X procedure when parametrized
with the G2/97 and E2 training sets demonstrates to some
extent the robustness of the form of parametrization in this
method.

How does G4(MP2)-6X compare with G4? We have
carried out such a comparison using the smaller E0 test set
of 148 energies. The same BMK/6-31+G(2df,p) geometries
were used for both G4(MP2)-6X and G4 for the sake of
consistency.35 We find that the G4(MP2)-6X procedure gives
an MAD (3.43 kJ mol-1) that is only slightly higher than
that for G4 (3.22 kJ mol-1) but considerably lower than that
for G4(MP2) with BMK geometries (4.03 kJ mol-1).

We now look at the performance of the E2-parametrized
G4(MP2)-6X procedure in more detail (Table 5). We find
that G4(MP2)-6X performs well for AEs and ∆Hfs (W4/08,
G2/97′ ∆Hf, and G3/99′), PAs, radical reaction enthalpies
(ADD and ABS), intermolecular interactions (HB16 and
WI9/04), and barriers in the DBH24 set, with MADs that
are in all cases smaller than 4.18 kJ mol-1 (1 kcal mol-1).
On the other hand, pericyclic reaction barriers (PR8), IEs,
and EAs show larger MAD values.

4.4. Outliers in the E2 Set. Table 6 lists the outliers in
the E2 set, i.e., situations for which the G4(MP2)-6X energy
deviates from the corresponding benchmark value by more
than 8.37 kJ mol-1 (2 kcal mol-1). Out of the 44 outliers,
there are four cases where the deviation is larger than 16.74
kJ mol-1 (4 kcal mol-1). These are the AEs for ClOO• and
P4, and the IEs for B2F4 and B2H4. In addition, there are 10

Table 4. Comparison of Deviations (kJ mol-1) for the E2
Test Set for G4(MP2), and for G4(MP2)-6X When
Parameterized with the G2/97 and E2 Training Setsa

G4(MP2)

test set MD MAD LD SD NO

E0 -0.57 4.58 -29.64 6.78 20
G2/97′ -0.78 4.42 -41.61 6.53 37
E1 0.16 4.22 -20.15 5.55 13
E2 -0.49 4.42 -41.61 6.38 70

G4(MP2)-6X (parametrized with G2/97)

test set MD MAD LD SD NO

E0 -1.34 3.81 -19.40 5.05 15
G2/97′ -0.28 4.09 -38.53 5.85 31
E1 0.76 3.44 15.28 4.38 9
E2 -0.32 3.85 -38.53 5.34 55

G4(MP2)-6X (parametrized with E2)

test set MD MAD LD SD NO

E0 -0.42 3.43 -19.47 4.67 8
G2/97′ -0.49 4.14 -36.66 5.87 29
E1 0.37 2.92 15.17 4.04 7
E2 -0.26 3.64 -36.66 5.14 44

a See section 3.3 for the definitions of the training and test sets.

Table 5. Deviations (kJ mol-1) for the E2-Parameterized
G4(MP2)-6X Procedure for the Various Test Setsa

MD MAD LD SD NO

E0 (148) -0.42 3.43 -19.47 4.67 8
W4/08 (99) -0.59 4.00 -19.47 5.32 8
DBH24 (24) 1.39 2.97 7.30 3.47 0
HB16 (16) -1.69 1.78 -5.17 1.59 0
WI9/04 (9) -1.23 1.34 -2.31 0.88 0
G2/97′ (248) -0.49 4.14 -36.66 5.87 29
∆Hf (94) -0.65 3.04 -16.62 4.61 6
IE (88) -0.39 4.68 -36.66 6.75 12
EA (58) -0.30 5.29 -15.53 6.56 11
PA (8) -1.12 2.79 -7.99 3.74 0
E1 (130) 0.37 2.92 15.17 4.04 7
G3/99′ (73) 0.11 3.36 15.17 4.65 6
ADD (21) 1.80 2.47 7.21 2.95 0
ABS (28) 1.31 1.68 3.72 1.53 0
PR8 (8) -4.29 4.35 -8.44 3.02 1
E2 (526) -0.26 3.64 -36.66 5.14 44

a See section 3.3 for the definitions for the training and test
sets.
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cases with a deviation that falls between 12.55 kJ mol-1 (3
kcal mol-1) and 16.74 kJ mol-1. We have briefly examined
these cases using higher-level procedures. The results are
shown in Table 7.

When comparing G4(MP2) and G4(MP2)-6X with G4,
we generally find better agreement between G4(MP2)-6X
and G4 than between G4(MP2) and G4. However, there are
a number of cases where G4(MP2) agrees better with G4,
notably for the IE of B2H4.

We find that G4 significantly reduces the deviations from
benchmark values for P4 (AE), B2H4 (IE), B2H6 (AE), B
(EA), and C (EA). Presumably, the use of MP4 in G4
(instead of MP2 in G4(MP2) and G4(MP2)-6X) to account
for the effect of adding diffuse and polarization functions to
the 6-31G(d) basis set is beneficial in these cases. The use
of the W1U procedure36 further reduces the number of
outliers with deviations that are larger than 12.55 kJ mol-1

from seven to five. However, we notice that the use of W1U
leads to notably larger deviations than with G4 in a number
of cases, particularly for the ∆Hf of C2F4, C2Cl4, and
CH2CHCl. The use of the spin correction (sc) term in the
W1Usc procedure reduces the deviation for the AE of ClOO
substantially compared with W1U (from -18.53 kJ mol-1

to -2.99 kJ mol-1), but in general the two procedures
perform comparably.

For the four cases where the deviations at the W1Usc level
remain larger than 12.55 kJ mol-1, namely, the IE of B2F4

and the ∆Hf of C2F4, C2Cl4, and CH2CHCl, it has previously
been suggested, on the basis of calculations of isodesmic
reactions and G3 and G4 calculations, that the accuracy of
the experimental values is questionable.28 The large devia-
tions for W1U and W1Usc in these cases support the
desirability of experimental re-examination.

5. Concluding Remarks

We have developed the G4(MP2)-6X procedure as a variant
of G4(MP2). It employs BMK/6-31+G(2df,p) for geometry
optimization and has six additional scaling factors for the
correlation energy components compared with G4(MP2), as
well as reoptimized HLC parameters.

We find it to be an improvement (MAD ) 3.64 kJ mol-1)
over G4(MP2) (MAD ) 4.42 kJ mol-1) for a wide range of
properties for the E2 set of 526 energies. A comparison of
G4(MP2)-6X with G4 on the E0 set shows that the
performance of the new procedure (3.43 kJ mol-1) ap-
proaches that for G4 (3.22 kJ mol-1) for this series of
energies, for which G4(MP2) has an MAD of 4.03 kJ mol-1.
Thus, the G4(MP2)-6X procedure bridges the gap between
G4(MP2) and G4, with an accuracy that is closer to G4 but
a computational cost that is comparable to that for the
considerably more economical G4(MP2). While G4(MP2)-
6X represents a noticeable improvement over G4(MP2), it
also has cases of dramatic failures. These can generally be
attributed to inadequate treatment of electron correlation.

We find that, when the G2/97 training set is used (in place
of E2) for parametrization, G4(MP2)-6X still gives uniformly
good results, not only for the types of energies represented
in G2/97 but also for the wider range of energies represented
in the larger E2 set. This reflects to some extent the
robustness of G4(MP2)-6X, despite the additional parameters.
In addition, it suggests the more general use of G2/97 as a
cost-effective training set for the screening of theoretical
procedures.
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Table 6. Outliers for the E2 Set for the G4(MP2)-6X Procedure Where Deviations (D) Are Larger than 8.37 kJ mol-1 (2 kcal
mol-1)a

Range of absolute deviations (D, kcal mol-1)

2 < D < 3 3 < D < 4 4 < D

W4/08 AE BHF2, F2O2, CS2, S4, CS B2H6 ClOO, P4

DBH24 ∆H‡ nil
HB16 HB nil
WI9/04 BE nil
G2/97′ ∆Hf SiH2 singlet, thiophene CF2O, C2F4, C2Cl4, CH2CHCl
G2/97 IE S, CH4, BF3, BCl3, C6H6, C6H5CH3, CH3F, C6H5NH2, Si2H6 C3H7 B2F4, B2H4

G2/97 EA Li, F, Si, P, CH, SiH, PH, CCH, CH2NC B, C
G2/97 PA nil
G3/99′ ∆Hf benzoquinone, pyrimidine, 2-methylthiophene, SF6 acetylacetylene, tetramethylsilane
RR49 ∆Hr nil
PR8 ∆H‡ 1,3-cyclopentadiene + C2H4 f norbornene

a See section 3.3 for the definitions for the training and test sets; AE ) atomization energy, ∆H‡ ) barrier, HB ) hydrogen-bond energy,
BE ) binding energy, ∆Hf ) heat of formation, IE ) ionization energy, EA ) electron affinity, PA ) proton affinity, ∆Hr ) reaction energy.

Table 7. Comparison of Deviations (kJ mol-1) for Various
Alternative Procedures for the Outliers Listed in Table 6
Where the Deviations Are Larger than 12.55 kJ mol-1 (3
kcal mol-1)a

G4(MP2)-6X G4(MP2) G4 W1U W1Usc

AE ClOO -19.47 -18.51 -16.86 -18.53 -2.99
AE P4 -16.83 9.84 -2.66 -4.30 -4.34
IE B2F4 -36.66 -41.61 -37.27 -32.52 -32.59
IE B2H4 -16.81 -9.29 -9.50 -12.28 -12.37
AE B2H6 -15.98 -17.51 -3.62 3.42 3.42
∆Hf CF2O 16.53 17.67 16.39 8.76 9.22
∆Hf C2F4 -12.63 -12.51 -13.50 -28.49 -27.88
∆Hf C2Cl4 -13.89 -23.39 -13.12 -22.94 -21.88
∆Hf CH2CHCl -16.62 -19.11 -15.17 -22.08 -21.56
IE C3H7 13.95 14.02 12.17 7.48 7.72
EA B -15.53 -21.44 -9.15 -7.96 -7.80
EA C -14.78 -18.85 -9.86 -6.56 -6.62
∆Hf acetylacetylene 13.45 11.04 10.68 6.72 7.56
∆Hf tetramethylsilane 15.17 15.13 14.36 0.72 1.66

a AE ) atomization energy, ∆Hf ) heat of formation, IE )
ionization energy, EA ) electron affinity.
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tions of computer time from the National Computational
Infrastructure (NCI) National Facility and Intersect.

Supporting Information Available: Script for running
G4(MP2)-6X calculations with Gaussian 09; reactions of the
DBH24, RR49, and PR8 sets (Table S1); zero-point vibra-
tional energies and thermal corrections from scaled BMK/
6-31+G(2df,p) frequencies and G4(MP2)-6X total electronic
energies (Table S2); and deviations from experimental and
benchmark values (Table S3). This material is available free
of charge via the Internet at http://pubs.acs.org.
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Abstract: The ab initio VB study for the electronic structure of the C2 molecule in the ground
state is presented in this work. VB calculations involving 78 chemically relevant VB structures
can predict the bonding energy of C2 quite well. Sequentially, a VBCIS calculation provides
spectroscopic parameters that are very close to full CI calculated values in the same basis set.
Furthermore, the analysis of the bonding scheme shows that a triply bonded structure is the
major one in terms of weights, and the lowest in energy at the equilibrium distance. The second
structure in terms of weights is an ethylene-like structure, displaying a σ + π double bond. The
structure with two suspended π bonds but no σ bond contributes only marginally to the ground
state. This ordering of weights for the VB structures describing the C2 molecule is shown to be
consistent with the shape of the molecular orbitals and with the multireference character of the
ground state. With the triply bonded bonding scheme, the natures of the π and σ bonds are
investigated, and then the corresponding “in situ” bond strengths are estimated. The contribution
of the covalent-ionic resonance energy to π and σ bonding is revealed and discussed.

Introduction

The precise bonding in the C2 molecule is quite enigmatic
if not intriguing. Applying the principle of maximum
coupling between overlapping atomic orbitals would lead to
structure 1, where the triple bond is made from one σ and
two π bonds as in acetylene, and the two odd electrons on
the carbon atoms are singlet coupled (Scheme 1). On the
other hand, when a molecular orbital (MO) diagram is used,

in Scheme 1, and the simple formula for calculating bond
order is applied, one would predict that the ground state,
X1Σg

+, is a doubly bonded molecule, as depicted in the
simple valence bond (VB) cartoon in 2. From the MO
diagram, the double bond in 2 corresponds to two suspended
π bonds, whereas the two “lone pairs” on the carbon atoms
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Scheme 1. Schematic Bonding Schemes and MO Diagram
for the X1Σg

+ Ground State of C2
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are σ lone pairs, which result from the full occupancy of the
bonding and antibonding MO pair 2σg and 2σu.

However, as pointed out recently,1 the C-C bond length
of 1.243 Å in X1Σg

+ 2 is shorter than any known CdC double
bond, e.g., in ethylene.3-5 Thus, Jemmis et al.1 and others6

argued that suspended π bonds are in fact shorter than σ
bonds, and as a result, the π doubly bonded molecule has a
shorter C-C distance than, e.g., ethylene with a σ + π
double bond. Nevertheless, this assessment of the bonding
in C2 rests on the supposed antibonding nature of the doubly
occupied 2σu MO, which is assumed to compensate for the
bonding nature of 2σg and to result in the absence of any σ
bonding. However, an alternative characterization of the
2σg-2σu MO pair, in which the 2σu MO would be only
weakly antibonding and would not compensate for the
strongly bonding character of 2σg, would make the C-C
bonding approach a triple bond,7,8 in support of structure 1
rather than 2. The respective shapes of the 2σg and 2σu MOs
are thus of fundamental importance for the C-C bonding
assessment and will be examined below.

Another intriguing aspect of the C2 molecule is the
presence of a low-lying triplet state (Table 1), a3Πu, with a
main configuration |(core)2σg

22σu
21πu

33σg
1〉, lying only 2

kcal/mol above the ground state |(core)2σg
22σu

21πu
4〉. Es-

pecially interesting is the fact that the bond length of this
excited state, 1.313 Å, is significantly increased relative to
the ground state, despite the quasi-identical bonding energy
of the two states. Qualitatively, this breaking of the bond-
length/bonding-energy relationship might be interpreted in
two ways: (i) Assuming structure 2 for the ground state, as
done by Sherrill et al.,9-11 the X1Σg

+ f a3Πu weakens one
π bond and benefits the σ bond; in such a case, the
corresponding elongation is expected according to the
author’s view that suspended π bonds should be shorter than
σ + π bonds.9-11 (ii) If, on the other hand, the triply bonded
structure 1 is assumed, the excitation cannot significantly
reinforce the σ bond, which is already present in the ground
state but may transform a two-electron π bond into a one-
electron π bond. One-electron bonds are not necessarily
weaker than two-electron bonds when the interatomic orbital
overlap is weak (see, e.g., Li2

+ vs Li2),12 but they are always
longer, thus explaining the long C-C bond in the a3Πu state.

Still, since the ground state has a longer C-C bond than
acetylene, it is clear that structure 1 alone cannot account
for the bonding in C2, unless the σ bond is particularly weak,
and the question is whether one should regard the molecule
more as a hybrid of 1 and 2 or simply as 1 with a weak σ

bond, or perhaps having different bonding features alto-
gether? This, as well as other questions about C2, can be
answered by modern VB calculations,13 which are presented
in this work to address a host of bonding conundrums
exhibited by this diatomic molecule.

Interestingly, despite the small size of the molecule, it has
proven to be a “hard nut to crack” by theoretical means, and
therefore before addressing the bonding issues, it is appropriate
to summarize some experimental facts and discuss some
selected previous theoretical studies on C2. The molecule is
present in astrophysical environments and many chemical
processes in the gas phase.14-19 It has been observed during
the photodissociation of acetylene and can be formed by the
direct reaction of the C(3P) atom with CH.16,20 Since the 1950s,
many experimental and theoretical studies have been dedicated
to the study of the features of C2.14-23 Recently, 17 electronic
states of C2 have been characterized by experimental methods.
Using the orbital diagram in Scheme 1, Table 1 shows the
electronic configurations and experimentally measured relative
energies of the lowest seven electronic states.17,19 As already
pointed out, the ground state of the molecule is X1Σg

+, and
above it there are a few triplet and singlet states within 2-44
kcal/mol. The spectroscopic parameters and potential energy
curves of the ground state and some of the low lying excited
states have been studied since 1992 using high-level theoretical
methods. Bartlett and Watts21 studied the X1Σg

+, a3Πu, and
b3Σg

- states and found that the single reference CCSD method
cannot describe the C2 molecule qualitatively due to the
multireference character of its ground state. Pradhan et al.22

used the multireference IC-MRCI method and obtained satisfac-
tory quantitative results for the spectroscopic parameters in the
ground state. Subsequently, Halvick20 used the EHFACE2
(extended Hartree-Fock approximate correlation energy)
model24,25 parameters fitted from ab initio MRCI calculations
in the large correlation-consistent cc-pV5Z basis set and
calculated the adiabatic potential energy curves of the 12 lowest
electronic states of the molecule. Sherrill and Abrams9 studied
the potential energy curves of the X1Σg

+, B1∆g, and B′1Σg
+

states at the full CI/6-31G* level and used this level as a
benchmark for the methods that are based on a single reference
molecular orbital wave function. These authors concluded that
electron correlation methods based on an UHF (Unrestricted
Hartree-Fock) single reference can describe the C2 molecule
correctly, whereas the methods that are based on the RHF
(Restricted Hartree-Fock) reference are wrong. Recently,
Sherrill et al.10 evaluated the performance of multireference
methods such as CASSCF, CASPT2, and MRCI and renor-
malized single reference methods such as EOMCCSD and CR-
EOMCCSD(T).11 The authors concluded that the multireference
methods give results on par with full CI. Moreover, the
renormalized EOMCCSD and CR-EOMCCSD(T) methods
have much better performance compared with the straightfor-
ward single reference methods CCSD and CCSD(T). Very
recently, Varandas extrapolated MRCI results to complete basis
set limits,26 and Mahapatra et al. tested the state-specific
multireference perturbation theory approach.27 A very accurate
binding energy for the C2 ground state was also obtained by
Bytautas and Ruedenberg,28 who approximated full CI results
with the “correlation energy extrapolation by intrinsic scaling”

Table 1. The Lowest Seven Electronic States of C2

Moleculea

term main electronic configuration ∆E (cm-1)

X1Σg
+ KK(σg2s)2(σu2s)2(πu2p)4

a3Πu KK(σg2s)2(σu2s)2(πu2p)3(σg2p) 716
b3Σg

- KK(σg2s)2(σu2s)2(πu2p)2(σg2p)2 6434
A1Πu KK(σg2s)2(σu2s)2(πu2p)3(σg2p) 8391
c3Σu

+ KK(σg2s)2(σu2s)2(πu2p)(σg2p)2(πg2p) 9227
B1∆g KK(σg2s)2(σu2s)2(πu2p)2(σg2p)2 ∼11858b

B′1Σg
+ KK(σg2s)2(σu2s)2(πu2p)2(σg2p)2 ∼15196b

a Experimental values taken from the literature.17,19 b Estimated
from Figure 1 in ref 17.
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(CEEIS) method in double-, triple-, and quadruple-� basis sets
with extrapolation to the complete basis set limit.

What emerges from all of these high level studies is the
extreme difficulty in calculating the ground state and the low-
lying excited states of C2 in a meaningful way, owing to the
multireference character of the wave functions and the near
degeneracies which change very rapidly as a function of the
C-C distance. As noted by Sherrill and Piecuch,11 the low-
lying states of C2 are so challenging and the failures of
various high-level electronic structure methods are so
dramatic that it is desirable to assess the reliability of the
methods against full CI results.

The multireference character of the ground state of C2 is
apparent already at the equilibrium geometry, wherein the
coefficient of the primary configuration, |(core)2σg

22σu
21πu

4〉,
is only 0.83 in a full CI calculation,11 and the doubly excited
configuration |(core)2σg

21πu
43σg

2〉 has a surprisingly large
coefficient of 0.33. The situation complicates further near
1.7 Å, where two diexcited determinants of the type
|(core)2σg

22σu
21πu

23σg
2〉, which have six electrons in σ

orbitals and only two in a π orbital, come into play and
become dominant in the X1Σg

+ state due to avoided crossing
with the B′1Σg

+ state.11

In summary, the studies using sophisticated theoretical
methods show that the ground state has distinct multireference
characteristics.9-11 However, the simple questions posed at the
outset (Scheme 1) regarding the type and number of bonds that
account for the bond energy and bond length in the molecule
are not discussed deeply in their work. Does C2 have a
suspended double π-bonding as in 2 or a triple bond as in 1, or
even another combination of σ and π bonds, and if so, what is
the precise role of the σ bonding? These questions concerning
chemical bonding will be addressed by use of the VB method,
which has both multireference character and conceptual clarity
suitable to answer such questions.

The article is organized as follows: It begins with the
introduction of the ab initio VB methods. Second, the VB
structures that are involved in the calculation are selected.
Third, the computational details and the results are shown
and discussed. The article is ended with a brief conclusion.

Theory and Methodology

A many-electron system wave function Ψ in VB theory is
expressed as a linear combination of Heitler-London-
Slater-Pauling (HLSP) functions, ΦK, in eq 1:29

where ΦK corresponds to “classical” VB structures and CK

represents structural coefficients.
There are several computational approaches for VB theory

at the ab initio level. In the VBSCF procedure,30,31 both the
VB orbitals and structural coefficients are optimized simul-
taneously to minimize the total energy. As such, the VBSCF
method takes care of the static electron correlation, but it
lacks dynamic correlation.

The VBCI method,32,33 which uses a configuration inter-
action technique, following VBSCF calculation, considers

the dynamic correlation by involving excited VB structures
which are generated by replacing occupied orbitals with
virtual orbitals. The virtual orbitals are strictly localized on
precisely the same fragment as the corresponding occupied
orbitals. In this manner, by merging all of the excited VB
structures into the corresponding fundamental structures of
the same electron occupancy, the VBCI wave function is
condensed to a linear combination of the same minimal
number of VB structures as in the VBSCF method. The
VBCI computations are performed at the VBCIS level, which
involves single excitations only.

The weights of the VB structures can be defined in several
ways. One commonly used definition is the Coulson-
Chirgwin formula,34 eq 2, which is the equivalent of a
Mulliken population analysis in VB theory.

One drawback of this formula is that the second term may
become more important than the first one if the overlap
between VB structures is too large, possibly leading to some
negative weights. Such weights, which are nonphysical, are
generally interpreted as an indication that the VB structure
in question is unimportant; however, eq 2 becomes inap-
propriate when negative weights get large absolute values.
For this reason, other definitions have been proposed, among
which are the Löwdin weights35 in eq 3:

or the renormalized sum of the coefficients squares in eq 4
where N is the normalizing factor.

Throughout the work, we use eqs 2-4, except for large
distances (2.0 Å), where the Chirgwin-Coulson definition
was abandoned since it gave large negative weights.

Computational Details. All eight valence electrons of the
C2 molecule are involved in VB calculations. As shown in
Scheme 2, the two atoms lie on the z axis, and the 2pz and
2s atomic orbitals (AOs) of the C atoms are hybridized to
form two hybrid orbitals pointing toward each other, labeled
p1z and p2z, and other hybrid orbitals pointing outward,
labeled s1 and s2. The remaining AOs are two pure p orbitals
lying in the xz plane, π1x and π2x, and two other pure p AOs

Ψ ) ∑
K

CKΦK (1)

Scheme 2. The VB-Orbital Representation in a Coordinate
Axisa

a The py orbitals are drawn with one lobe pointing at the observer.
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in the yz plane, π1y and π2y, drawn as circles with one lobe
pointing at the observer.

The VBSCF and VBCIS methods are used for the
calculations of spectroscopic parameters, with the 6-31G*
and cc-pVTZ basis sets. The diabatic and adiabatic potential
energy curves are calculated at the VBSCF and CASSCF(8,8)
levels in the 6-31G* basis set. All orbitals are strictly
localized; i.e., they are expressed as combinations of basis
functions that belong to single carbon atoms, without tails
on the other atom. The VB calculations are carried out with
the Xiamen Valence Bond (XMVB) package of programs.36,37

Basis set integral and nuclear repulsion energy are taken from
the output of Gaussian 9838 calculations.

The VB Structure Set. For a system of spin S with N
electrons and m orbitals, the number of independent VB
structures is given by the Weyl formula:39

For the singlet ground state of C2, taking all eight valence
orbitals and electrons into account, the total number of VB

canonical structures amounts to 1764. Of course, not all of these
VB structures are essential for the description of the bonding
in C2, and the first step of the VB application is to select the
VB structures that are necessary and sufficient for a reliable
description of the electronic state in question. Clearly, an
effective way is to select the VB structures by analyzing the
characteristics of chemical bonding. Scheme 3 displays some
generic VB structures which are gathered by groups, each group
representing a specific bonding mode. The complete set of VB
structures is displayed in the Supporting Information.

Group 1 involves the VB structures needed to represent the
bonding mode with two π bonds, one σ bond, and two unpaired
electrons in the s1 and s2 orbitals, i.e., structure 1 in Scheme 1.
Since each bond is a combination of a major covalent
component and two relatively minor ionic components, we must
take all combinations of covalent and ionic VB structures. Thus,
in Scheme 3, 1a represents the fully covalent triply bonded VB
structure, while 1b is one of the monoionic structures. The
dionic structures are also included, but only if they keep the
two carbon atoms neutral, as in 1c. Triply ionic structures are
neglected. As a result, a total of 21 VB structures are kept for
the description of the triply bonded structure 1.

Scheme 3. Some Representative VB Structures Gathered by Groups of Bonding Modes

D(m, N, S) ) 2S + 1
m + 1 ( m + 1

1
2

N + S + 1 )( m + 1
1
2

N - S ) (5)
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The same principles are applied to select the VB structures
needed for the description of structure 2 of Scheme 1, which
possesses two suspended π bonds. A total of 29 structures
are selected (see the Supporting Information) and gathered
in group 2, among which, three representative structures are
2a-c in Scheme 3.

Another doubly bonded structure is possible with σ + π
bonds, while the electrons of the remaining π system are
relegated to orbitals s1 and s2, as shown in 3a-c in Scheme
3. Group 3 involves a total of 14 VB structures.

To complete the set of VB structures having four electrons
in σ and four electrons in π orbitals, and to ensure correct
dissociation of the C2 molecule, one must make sure that all
14 ways of spin-coupling the eight electrons wherein all
orbitals are singly occupied (e.g., 1a, 2a, 3a, and so on) are
included in the VB structure set. Such structures are gathered
in groups 4, 5, and 6 in Scheme 3a. Two VB structures
(group 4) display a single σ bond, four structures display a
single π bond (group 5), and eight structures display no bond
at all (group 6). Accordingly, the total number of VB
structures of the 4-σ-4-π type amounts to 78 and constitutes
what we will call hereafter the 78-set.

To ensure a correct dissociation, the description of C2 requires
also the VB structures displaying six electrons in σ orbitals and
only two in π orbitals. According to full CI benchmarks, such
structures are expected to play little or no role at the equilibrium
distance but should become important near 1.7 Å.9-11 Three
of these 6-σ-2-π structures, out of a total of 14 selected ones,
are represented in group 7 in Scheme 3. These 14 VB structures,
added to the 78-set, form the 92-set that will be used to generate
the ground state potential energy curve (PEC) from the
equilibrium to a separation of 3.0 Å.

Hereafter, we shall use the term “group” to designate either
a set of VB structures or the bonding scheme that these
structures represent. For example, “group 1” or “structure
1” will designate the triply bonding structure displayed in
Scheme 1 as well as the combination of the 21 VB structures
that are needed to represent it, and so on.

Calculating the Energies of the Individual Group
Structures. The energy of an individual group of structures
can be calculated by block-diagonalizing a Hamiltonian
matrix involving only the VB structures that belong to this
group, i.e., VB structures 1-21 for group 1, 22-50 for group
2, and so on. This can be done by keeping the same orbitals
as those optimized for the ground state, without further orbital
reoptimization. This technique is appropriate if the aim is to
better analyze the properties of the ground state in terms of
VB mixing. On the other hand, one may also perform a full
VB calculation of the group structure alone, this time by
reoptimizing the orbitals. With this latter method, called the
“variational diabatic configuration (VDC) method”, the
energy of the group structure is variationally minimized. Both
methods have been used in this work.

Computational Results and Discussion

Dissociation Energy Curve and Spectroscopic Con-
stants for the X1Σg

+ Ground State. Before discussing the
bonding mode of C2, it is important to check that our 92-set

of VB structures is sufficient to faithfully describe the
electronic structure of this molecule at any distance. This
can be done by plotting the adiabatic PEC for the X1Σg

+

state as a function of the interatomic distance and comparing
it with larger VB or CASSCF results. Figure 1 shows the
dissociation energy curve for the X1Σg

+ state as calculated
at the VBSCF level with the 92-set, at the full valence
VBSCF level involving 1764 spin-couplings, and at the full
valence CASSCF(8,8) level in the MO framework. It can
be seen that the VBSCF-92 curve is very close to the
VBSCF-1764 one at all distances, especially at the equilib-
rium distance. The VBSCF-1764 curve is also quite close
to the CASSCF(8,8) curve at the equilibrium and at large
distances but somewhat departs from it in the region near 2
Å. This slight difference between the full valence VBSCF
and CASSCF calculations might appear surprising, given that
the two calculations span the same space of 1764 configura-
tions. This is due to the fact that (i) the VBSCF-1764
calculation uses the orbitals of the VBSCF-92 calculation,
without further reoptimization, and (ii) orbital optimization
in CASSCF has a few more degrees of freedom than in
VBSCF, as has been noted,13 because the atomic orbitals
(AOs) that compose the various MOs in CASSCF may be
different in size and shape from one MO to another, while
the set of AOs is unique in VBSCF. Of course, this VBSCF
limitation disappears when further CI is performed, as in
the VBCIS level. We note that the VBSCF/CASSCF
difference is small, and both calculations yield the same
bonding energies to within 6% using the 6-31G* basis set.

Table 2 shows the spectroscopic constants as computed
by VBSCF and VBCIS methods for the ground state of C2

molecule. These constants have been calculated using the
restricted set of 78 VB structures, as the 6-σ-2-π structures
proved completely negligible at the equilibrium C-C
distance. A comparison is made with experimental results
and with some previous theoretical calculations. The VB
optimized equilibrium bond lengths range between 1.252 and
1.262 Å, very close to the full CI value9-11 (1.260 Å) and
to other computational results by high level MO methods.21,22

The VBSCF values of dissociation energy, 5.77 eV (6-31G*)
and 5.80 eV (cc-pVTZ), amount to 93% of the experimental

Figure 1. The PECs of the ground state of the C2 molecule
computed at the VBSCF level in the 6-31G* basis set.
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value. The VBCIS-computed results bring significant im-
provements relative to the VBSCF method. The VBCIS/6-
31G* computed dissociation energy is the value of 6.29 eV,
slightly overestimating the bonding energy with respect to
full CI in the same basis set. This is a systematic tendency
of VBCIS and related methods that are generally found to
yield bonding energies intermediate between full CI and
experimental values, owing to a slight excess of relative
correlation energy that “fortunately” compensates for the
paucity of the basis set.13 The most accurate VB computed
vibrational frequency in Table 1, 1895 cm-1 in the cc-pVTZ
basis set, is within 2% of the experimental data. All of these
successful VB results show that the VB description of the
C2 ground state is accurate, despite the small number of VB
structures, and that the subsequent analysis of the bonding
mode can be trusted.

Nature of the X1Σg
+ Ground State. Table 3 shows the

VBSCF/6-31G* weights of the various VB structures,
summed up for each group, as calculated by eqs 2-4. As
written already, the various formulas (eqs 2-4) lead to
different values but very similar trends and have therefore a
qualitative significance.

In all of the weight definitions (eqs 2-4), group 1, which
represents the triply bonded structure, is the major bonding
mode at the equilibrium distance with weights of 0.472-0.679
(Table 3, columns 2-4). At the same geometry, the second
group, by order of importance, is group 3, which describes
a σ + π double bond (weights 0.200-0.264). The weights
for group 2, with the “suspended double π-bonding”, are
small and more variable, -0.05, 0.13, and 0.02. As has been
mentioned in the Theory and Methodology section, negative

weights are unphysical but may be found with the Chirgwin-
Coulson definition of the weights (eq 2), in which they
signify the low importance of the VB structure in question
in the total wave function. This is confirmed by the low
weights also found for the VB structures of group 2, as
calculated by the alternative definitions (eqs 3 and 4). Last,
group 7, the 6-σ-2-π bonding mode, is found to be totally
negligible at the equilibrium distance by all weight defini-
tions, in harmony with its negligible stabilizing effect (vide
supra) and with the fact that the VB structures belonging to
this group are strictly orthogonal to all of the others. As for
groups 4-6, which are necessary to ensure correct dissocia-
tion but do not correspond to chemically significant bonding
schemes, their weights are found to be small, albeit not
negligible, at the equilibrium geometry. Thus, if we restrict
the discussion to groups 1-3 and 7, all weight definitions
(W) end up with a clear qualitative ordering of importance
in the C2 ground state at the equilibrium distance, eq 6:

The description of the C2 ground state in terms of a major
triply bonded structure 1 and a less important, but significant,
σ + π doubly bonded structure 3 nicely accounts for the
bond length of 1.240 Å, intermediate between that of ethylene
(1.339 Å) and that of acetylene (1.203 Å), and closer to the
latter.2

The ordering displayed in eq 6 is completely reshuffled
at 2.0 Å, a distance at which the 6-σ-2-π bonding mode
(group 7) is found to be important with all definitions
(Table 3, columns 5 and 6), in agreement with high level
MO studies which stress the importance of the configu-
ration |(core)2σg

22σu
21πu

23σg
2〉 in this region of the PEC.

Another way to estimate the importance of the different
groups for the description of the ground state is to calculate
their individual energies at the equilibrium geometry. Even
if there is no strict relationship between the energy of a VB
structure and its weight in the ground state, it is generally
assumed that the lower the energy of a VB structure or group-
structure, the stronger will be its contribution to the ground
state. The calculation of the energies of each group was
performed by separate VB-CI involving only the VB
structures of this group, while keeping unchanged the orbitals
of the ground state. The results, as calculated at the
equilibrium geometry, are displayed in Table 4, columns 2
and 3. It can be seen that group 1 is by far the lowest,
followed by group 3 at 81.36 kcal/mol higher. Group 2 lies
even higher, 36.82 kcal/mol over group 3. Finally, groups
4-6 are much higher, confirming their low contribution to
the ground state in this geometry. Thus, it can be seen that
the energy ordering of groups 1-3, in eq 7 below, is
intuitively in agreement with the weight ordering in eq 6.

Still another way to assess the relative contributions of
each group to the description of the ground state is to
calculate the stabilization energy that is brought about when
this group is mixed with the major group 1. The results,
obtained by separate VB-CI at the equilibrium geometry as

Table 2. The Spectroscopic Parameters of the Ground
State of C2

method basis set Req (Å) De (eV) ωe (cm-1)

VBSCF 6-31G* 1.256 5.77 1994
cc-pVTZ 1.252 5.80 1996

VBCIS 6-31G* 1.262 6.29 1922
cc-pVTZ 1.258 6.38 1895

CASSCF(8,8) 6-31G* 1.262 6.15 1858
cc-pVTZ 1.256 6.18 1840

ICMRCIa cc-pVTZ 1.252 6.09 1841
ICMRCI+Qa cc-pVTZ 1.253 6.01 1840
CCSD(T)b cc-pVTZ 1.245 6.21 1869
full CIc 6-31G* 1.260 6.00 1859
exptl.d 1.243 6.42 1855

a Reference 22. b Reference 21. c Reference 11. d Recent
experimental data taken from reference 28 yield D0 ) 6.305 eV, to
which one must add a ZPE of 0.115 eV, taken from http://
www.cccbdb.nist.gov.

Table 3. The Weights of VB Structures Gathered by
Groups from VBSCF/6-31G* Calculations at the Equilibrium
C-C Distance and at 2.0 Å

structures eq 2 (Req) eq 3 (Req) eq 4 (Req)
eq 3

(2.0 Å)
eq 4

(2.0 Å)

group 1 0.628 0.472 0.679 0.203 0.182
group 2 -0.052 0.126 0.017 0.199 0.206
group 3 0.264 0.248 0.200 0.173 0.095
group 4 0.061 0.048 0.051 0.111 0.314
group 5 0.080 0.074 0.043 0.073 0.037
group 6 0.018 0.033 0.011 0.070 0.040
6-σ-2π 0.000 0.001 0.000 0.172 0.127

W(group 1) > W(group 3) > W(group 2) .
W(group 7) ∼ 0.0 (6)

E(group 1) < E(group 3) < E(group 2) (7)
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above, are displayed in Table 4, columns 5 and 6. It is clear
that it is group 3 that contributes the most to stabilizing the
ground state by mixing with group 1, with a stabilization
energy of ca. 15 kcal/mol, vs only 2-6 kcal/mol for each of
the other groups. On the other hand, group 2 contributes very
weakly to the stabilization energy of the ground state relative
to group 1, by barely 2 kcal/mol. It is therefore clear that the
three types of test calculations that have been done are consistent
with each other and that the emerging bonding picture of C2

involves the major triply bonded structure 1, with an important
contribution of the σ + π doubly bonded structure 3, and a
minor contribution of the π + π structure 2.

How can the unimportance of group 2 at the equilibrium
geometry be reconciled with the MO diagram in Scheme 1,
displaying a pair of occupied MOs of the σ type, one bonding
(2σg) and one possibly antibonding (2σu)? As argued in the
Introduction, this can be interpreted by the shapes of the
respective orbitals and by the natural orbital occupation
numbers obtained from two-configuration MCSCF or CASS-
CF(8,8) wave functions. If the 2σg and 2σu MOs are clearly
bonding and antibonding, respectively, then this argues in
favor of the absence of σ bonding, and therefore in support
of the bonding mode displaying two “suspended” π bonds,
i.e., group 2. If, on the other hand, the 2σu orbital is only
weakly antibonding, then structures displaying σ bonding,
i.e., group 1 and group 3, are favored.

Figure 2 displays the shapes of the 2σg, 2σu, and 3σg

MOs, as they arise from a two-configuration MCSCF
calculation involving the two most important configura-
tions, |(core)2σg

22σu
21πu

4〉 and |(core)2σg
21πu

43σg
2〉. It

appears very clearly that 2σg is strongly bonding, as is 3σg,
albeit to a somewhat lesser extent than 2σg. On the other
hand, the 2σu MO is an out-of-phase combination of two
outward-directed hybrids and has therefore very little anti-
bonding character. It follows that the two most important
configurations in the X1Σg

+ ground state both display some
important contribution from σ bonding, in agreement with
the predominant weights of group 1 and group 3 structures
arising from the VB calculations, and ruling out group 2.

Diabatic Potential Energy Curves. Figure 3 shows the
diabatic potential energy curves (PECs) for each individual

group of VB structures, shown above in Scheme 3, calculated
at the VBSCF/6-31G* level. For each group, the VBSCF
calculation is performed in the space of all of the VB
structures that belong to this group, and this time the orbitals
are reoptimized for each group, so as to get the lowest
possible energies for the diabatic curves (VDC method, see
Theory and Methodology section). Groups 4-6 that are
included in the calculation of the ground state for complete-
ness but do not represent chemically meaningful bonding
modes are not considered in Figure 3. Moreover, we
encountered some computational difficulties with the diabatic
energy curve of group 2, which was found to lie between
group 1 and group 3 at the equilibrium distance, in
contradiction with the results displayed in Table 4 (group 2
lying above group 3). However, examination of the VB wave
functions showed that some of the orbitals optimized for
group 2 alone are exceedingly different from the correspond-
ing orbitals in the ground state. For example, the overlap
between orbitals p1z and p2z (Scheme 2) is 0.70 in the ground
state, vs only 0.30 as optimized for group 2 alone. It was
therefore concluded that the result of the VBSCF calculation
of group 2 alone has little to do with group 2 as a component
of the ground state. For this reason, Figure 3 is restricted to
the diabatic curves of groups 1, 3, and 7, together with the
adiabatic ground state.

It is seen that the lowest diabatic curve in the region near
the equilibrium geometry is that of group 1, which represents
the triply bonded bonding mode. Group 3 and group 7 curves
lie significantly higher than those of group 1 at the equilib-
rium geometry, but group 7 (the 6-σ-2-π bonding mode)
becomes the lowest one at 1.7 Å, in agreement with the full
CI study in the MO framework that predicts that determinants

Table 4. Energies of the Individual Groups and Their Combinations with Group 1a

group E (Hartrees) E (kcal/mol) groups E (Hartrees) E (kcal/mol)

group 1 -75.568055 0 group 1 -75.568055 0
group 2 -75.379708 118.18 groups 1 + 2 -75.571034 -1.88
group 3 -75.438395 81.36 groups 1 + 3 -75.591799 -14.91
group 4 -75.201470 230.0 groups 1 + 4 -75.578180 -6.36
group 7 -75.165757 252.44 groups 1 + 5 -75.572812 -3.00
group 6 -74.941845 392.94 groups 1 + 6 -75.574775 -4.23

a The orbitals of the ground state are used in all VB structures.

Figure 2. Shapes of the 2σg, 2σu, and 3σg molecular orbitals
at the equilibrium geometry from a TCSCF calculation involv-
ing the 2σg

22σu
21πx

21πy
2 and 2σg

21πx
21πy

23σg
2 configurations.

Figure 3. The VBSCF calculated PECs for the ground states
of the C2 molecule with the 6-31G* basis set.
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of the type |(core)2σg
22σu

21πu
23σg

2〉 become dominant from
this distance onward.

Characteristics of the Individual σ and π Bonds. As
has been shown above, the VBCIS calculation with a
restricted set of 78 structures yields an accurate total bond
dissociation energy (BDE), calculated as a difference between
the molecular energy and the sum of atomic energies.
However, this global quantity does not give us much
information on the individual σ and π bonds that participate
in the overall bonding. Two questions of interest are as
follows: (i) What are the relative strengths of the π and σ
bonds as contributors to the overall bonding? (ii) What are
the natures of these individual bonds: classical covalent or,
rather, charge-shift bonds (see the definition below)? These
features of the σ and π bonds were investigated by restricting
attention to the major VB structure (1).

In multiple bonds, like in C2, it is not simple to
experimentally determine separate bond energies for σ and
π bonds. In double bonds (e.g., ethylene), one can roughly
estimate the π bonding energy as the rotational barrier;
however, this quantity also involves relaxation of the σ bond
and hyperconjugation in the twisted form. The problem gets
even worse with triple bonds, since these species do not have
rotational barriers. However, as we have shown amply
before,13,40-43 these difficulties can be bypassed by defining
a nonbonded reference state for one π bond, in which the
two electrons maintain opposite spins but do not exchange.
For example, if one wants to estimate the strength of one of
the two π bonds in the triply bonded structure 1, one may
define a nonbonded state, called the “quasiclassical state”
Ψπ-QC

(1) in Figure 4, in which the electrons of a given π bond
have only one spin arrangement pattern (only R�), and
therefore this structure by itself has no bonding due to the
resonance with the second spin arrangement pattern that is
required to form a singlet pair. In such a state, the interactions
across the unpaired π bond in Ψπ-QC

(1) involve only classical
electron-electron repulsion, nuclear repulsion, and electron-
nuclear attraction, and since the fragments are neutral, these
terms sum to approximately zero. Thus, the difference
between the energy of Ψπ-QC

(1) and that of the fully bonded
structure 1 gives the “in situ” π-bonding energy De

π at a given
interatomic distance, i.e., the bonding energy that effectively
stabilizes the electronic interaction of the considered π bond

without any other relaxation or reorganization term arising
from other bonds. The in situ π-bonding energy in structure
1 is expressed in eq 9:

where Ψfull
(1) is the fully optimized wave function for structure

1, calculated by a VBSCF calculation involving the 21 VB
structures of group 1.

An important point to note is that the QC state remains
nonbonding only at distances equal to or longer than the
optimal bonding distance12 but becomes repulsive at shorter
distances and therefore ceases to be a good reference state
for measuring the in situ bonding energy in such a case.
Moreover, one expects the repulsive wall of the QC state to
be basis set dependent: the more flexible the basis set, the
less repulsive the QC state. Accordingly, the method can be
applied for the π components of multiple bonds but will be
much less accurate for the σ component, since at a length of
1.25 Å, the latter is “compressed” relative to the optimal
distance for a single σ bond (∼1.50 Å for a C-C σ bond
between sp hybrids). Thus, we will only get a rough
estimation for the σ bond strength.

Equation 9 has been applied for structure 1 with the
6-31G* basis set, yielding an in situ bonding energy of 93.3
kcal/mol for the π bond, very close to the value 92.25 kcal/
mol that was found with the same technique by Ploshnik44

for the π bond of acetylene. Interestingly, these values are
significantly larger than the in situ π bonding energy of 72.0
kcal/mol calculated by Galbraith et al.6 for ethylene, in
agreement with the principle that π bonds prefer short bond
lengths.

The same technique has been used to estimate the in situ
bonding energy of the σ bond in 1, yielding an in situ
bonding energy of 99.4 kcal/mol in 6-31G* basis set, and
only 64.1 kcal/mol in the larger cc-pVTZ one, thus confirm-
ing the expected basis set dependency and the lack of
accuracy of the “in situ” estimation of the σ bond strength
of C2.

Summing up the σ and π in situ bonding energies, one
would arrive at a total of 251-286 kcal/mol for structure 1,
a value that is of course much larger than the true dissociation
energy because the fragments enjoy some demotion energy
from their local high spin states in the molecule to their triplet
states at infinite distance. This high value can be compared
to the estimated bond strength of acetylene relative to the
high spin fragments, as calculated by Frenking.45 In this
approach, which is also that of Trinquier and Malrieu,46,47

Carter and Goddard,48 and others,49 the acetylene molecule
is considered as the product of interactions between two 4Σ-

CH fragments, yielding a triple bonding energy of 270.9 kcal/
mol,45 before the final dissociation energy is obtained after
adding the demotion energy of the fragments from 4Σ- to
their ground states 2Π. From this comparison between
acetylene and the triply bonded structure (1) of C2, it seems
that our window of 64-99 kcal/mol for the in situ σ bond
strength of structure 1 is reasonable.

In the VB framework, any two-electron bond is described
as a superposition of one covalent and two ionic forms, even

Figure 4. (a) Definition of in situ bond energy for a π bond
of structure 1 based on the quasiclassical state (QC) refer-
ence. (b) Definition of the covalent-ionic resonance energy
for a π bond of structure 1.

De
π ) E(Ψπ-QC

(1) ) - E(Ψfull
(1) ) (9)
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in the homonuclear case.13 Generally speaking, whenever
the covalent structure has the largest weight, which is always
the case for homonuclear molecules,50 the bond dissociation
energy BDE of any of the σ or π bonds in structure 1 will
be given in eq 10:

Here, BDEcov is the covalent spin-pairing energy of the bond,
and REcov-ion is the covalent-ionic resonance energy due to
the mixing of the ionic structures into the covalent one(s).
Both quantities are variational within the subset of VB
structures. In classical covalent bonds (e.g., H2, H3C-CH3,
etc.), the covalent term is the major one; however, there exists
a category of bonds, termed “charge-shift” (CS) bonds, where
it is the resonance energy term, REcov-ion, that is the major
one, in eq 10, and responsible for most of the bonding.50,51

The covalent-ionic resonance energy of a π bond in
structure 1 can be estimated by means of eq 11, as
schematized in Figure 4b:

where Ψπ-cov
(1) is a variational combination of all of the VB

structures in group 1 in which the considered π bond is
purely covalent, and Ψfull

(1) is defined as in eq 9. The calculated
values are displayed in Table 5. The 6-31G* value for REπ,
44.2 kcal/mol per π bond, is seen to be slightly smaller than
50% of the in situ π-bonding energy (93.3 kcal/mol),
showing that the π bonds in 1 have a strong charge-shift
character and lie between classical covalent bonds and
charge-shift ones, according to our classification.50 The same
conclusion is reached with the calculation in the cc-pVTZ
basis set.

The charge-shift character of the σ bond in structure 1
can be estimated in an analogous way, by means of eq 12:

where Ψσ-cov
(1) now involves the VB structures in group 1 in

which the σ bond is purely covalent. The REσ values, 12-15
kcal/mol (Table 5), are now much smaller than the estimated
in situ σ-bonding energy, clearly classifying the σ bond in 1
as a classical covalent bond.

Conclusion

The electronic structure of the C2 molecule in the ground
state was described herein using the ab initio VB calculations.
While this molecule is known to require very sophisticated
computational methods in the MO-CI framework, owing
to its strong multireference character, the VB method
encounters no particular difficulties with this challenging

molecule. Thus, a simple VBSCF calculation involving 78
VB structures, selected on the basis of chemical criteria, is
followed by configuration interaction with single excitations
(VBCIS). Such a calculation provides spectroscopic param-
eters that are very close to experimental values in the largest
basis set, and also close to full CI calculated values in the
smallest one.

According to the VB results, the electronic structure of
the C2 ground state is more complex than that of acetylene
and is described in terms of three interacting bonding
schemes. A triply bonded structure, analogous to the bonding
scheme of acetylene, is the major one in terms of weights,
and the lowest in energy at the equilibrium distance. The
second structure in terms of weights is an ethylene-like
structure, displaying a σ + π double bond. The structure
with two suspended π bonds but no σ bond contributes only
marginally to the ground state.

The natures of the π and σ bonds are investigated in the
triply bonded bonding scheme. The “in situ” strength of each
of these bonds is estimated, defined as the effective strength
of the bonding interaction at the equilibrium distance without
the geometrical relaxation and fragment reorganization that
occur at large distances. The π bond is found to be stronger
than the π bond of ethylene, but as strong as the π bond of
acetylene with an in situ bond strength of 93.3 kcal/mol.
The σ bond strength could not be estimated accurately by
the “in situ” technique; however the estimated order of
magnitude shows that this bond strongly contributes to the
overall bonding in C2. This probably explains why the
structure with suspended π bonds cannot be the major one
in the ground state of C2.

The VB calculations also allow for specification of the
contribution of the covalent-ionic resonance energy to
bonding in each of the π and σ bonds. While the σ bond is
found to be a perfectly classical covalent bond, the π bonds
have significant contribution from the covalent-ionic reso-
nance energy, which classifies them as intermediate between
classical covalent and charge-shift bonds.

Finally, the bonding picture of C2 that emerges from this
study is that of a mixture of a major triply bonded structure,
•CtC•, with rather strong σ and π bonds, perturbed by a
less important σ + π doubly bonded structure :CdC:, which
accounts for the bond length being intermediate between that
of ethylene and that of acetylene, but closer to the latter
molecule.
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Note Added in Proof. We thank one of the referees
for pointing out the results of some unpublished CASSCF
(8,8) calculations in support of the triply bonded structure
1. The occupation numbers of the natural orbitals from this
calculation indicate that although the π bonds (x and y) are
very important, with occupation numbers of 1.89 for the
bonding orbitals vs 0.12 for the antibonding ones, the σ
orbitals also contribute to bonding, with cumulated occupa-

Table 5. In Situ π-Bonding Energies and Covalent-Ionic
Resonance Energies for the π and σ Bonds of the Triply
Bonded Structure 1, As Calculated by the VBSCF Method
(Energies in kcal/mol)

basis set De
π De

σ REπ REσ

6-31G* 93.3 99.4 44.2 15.1
cc-pVTZ 88.1 64.1 36.1 12.2

BDE ) BDEcov + REcov-ion (10)

REπ ) E(Ψπ-cov
(1) ) - E(Ψfull

(1) ) (11)

REσ ) E(Ψσ-cov
(1) ) - E(Ψfull

(1) ) (12)
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tion numbers of 2.38 for the bonding σg orbitals vs only 1.61
for the antibonding 2σu which, we recall, is only slightly
antibonding

Supporting Information Available: These five schemes
show all 92 VB structures in groups 1-7. This information
is available free of charge via the Internet at http://
pubs.acs.org/.
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Abstract: Chippindale et al. have recently synthesized the unique molecules (NC)Ag(NH3) and
BrAg(NH3) and shown the heavy atom skeletal structures to be linear. Here, a theoretical study
is reported of 12 members each of the two isovalent series of molecules. For (NC)Ag(NH3) and
BrAg(NH3), the theoretical structures agree well with those determined by X-ray crystallography.
Structures for the 22 yet unknown compounds should be similarly reliable. The dissociation
energies for a loss of NH3 from the two known compounds are significant (34 and 31 kcal/mol),
confirming their viability. For the other systems, the ligand dissociation energies are highly
variable, ranging from 9 kcal/mol (BrAg-NF3) to 44 kcal/mol (BrAu-PH3). The bond dissociation
energies for the different metals follow the irregular order Au > Cu > Ag. For the XY3 ligands,
the dissociation energies follow the order NH3 > PH3 > PF3 > NF3, except for the BrAu-XY3

complexes. Electronic structure insights are gained via Natural Bond Orbital (NBO) analyses.

Introduction

The metals most frequently forming linear two-coordinate
metal complexes are the d10 metals, particularly the coinage
metals Cu, Ag, and Au in their +1 oxidation states.1 For
gold, this linear coordination chemistry dominates the +1
oxidation state, and both symmetrical and unsymmetrical
linear Au(I) complexes are known. For example, phosphine
complexes of gold(I) halides, namely, R3PAuX (X ) Cl,
Br, I), are commonly used reagents in gold chemistry.2,3 Such

linear gold(I) complexes are relatively inert kinetically. They
are rather unreactive toward increasing their coordination
number above two by ligand addition reactions. This
characteristic feature of linear Au(I) chemistry may be
attributed to relativistic effects.2

The situation is different with the lighter coinage metals
copper and silver. Although the organic bis(silver carbene)
complexes, such as Ag-based N-heterocyclic carbene com-
plexes, have been reported,4-12 before 2008, simple linear
asymmetrical complexes of Cu(I) and Ag(I) were unknown
because of limitations in synthetic methods, the kinetic
lability of such complexes, and the formation of infinite chain
complexes or species with higher metal coordination
numbers.13-19 However, symmetrical linear two-coordinate
complexes of copper and silver have been known for more
than a century. Using silver as an example, the symmetrical
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linear complexes Ag(NH3)2
+ and AgX2

- (X ) CN, Cl, Br,
I) have been known for many decades and are routinely
discussed in inorganic chemistry textbooks.1

A recent (2008) study of the behavior of silver(I) deriva-
tives in aqueous ammonia reported a breakthrough in the
synthesis of asymmetrical linear silver(I) derivatives.13

Therein, cautious evaporation of solvent from concentrated
solutions of silver(I) halides or pseudohalides in aqueous
ammonia led to the derivatives NC-Ag-NH3 and
Br-Ag-NH3, which were shown by X-ray crystallography
to be discrete molecules rather than infinite chains. The
cyanide complex NC-Ag-NH3 was found to be stable to
100 °C before losing ammonia to form AgCN. The bromide
complex Br-Ag-NH3 was less stable, losing ammonia
around room temperature to give AgBr. It thus becomes of
interest to investigate factors affecting the stability of
NC-Ag-NH3 and other complexes analogous to it. Re-
cently, the gas-phase monoammoniate of silver chloride
(NH3 · · ·Ag-Cl) was also observed by Mikhailov et al.,20

and the corresponding ab initio calculations performed by
the authors.

This paper describes our attempts using density functional
theory to explore the possible range of coinage metal
derivatives of the type NC-M-XY3 and Br-M-XY3 (M
) Cu, Ag, Au; X ) N, P; Y ) H, F).

Theoretical Methods

Two density functional theory (DFT) or hybrid Hatree-Fock/
DFT methods were used in this study. The first functional
is B3LYP, which incorporates Becke’s three-parameter
functional (B3)21 with the Lee, Yang, and Parr (LYP)
correlation functional.22 The second approach is BP86, using
the exchange functional of Becke23 in conjunction with the
correlation functional of Perdew.24

For the coinage metals, Cu, Ag, and Au, we adopted the
Stuttgart/Dresden double-� (SDD) effective core potential
(ECP) basis sets.25 In these basis sets, the innermost-electrons
(10 for Cu, 28 for Ag, and 60 for Au) for the transition metal
atoms are replaced by the effective core potentials (ECP),
which include relativistic effects, known to be important for
the heavy transition metal atoms.2 For the three coinage
metals, the SDD basis sets for the 19 valence electrons are
Cu(8s7p6d/6s5p3d), Ag(8s7p6d/6s5p3d), and Au(8s6p5d/
7s3p4d).

All-electron double-� plus polarization basis sets aug-
mented with diffuse functions (DZP++) are used for main
group elements. The DZP++ basis sets for carbon, nitrogen,
fluorine, and phosphorus are composed of the standard
Huzinaga-Dunning double-� basis sets25-28 plus one set of
pure spherical harmonic d functions with orbital exponents
Rd(C) ) 0.75, Rd(N) ) 0.80, Rd(F) ) 1.00, and Rd(P) )
0.60 augmented with one set of diffuse functions Rs(C) )
0.04302 and Rp(C) ) 0.03629, Rs(N) ) 0.06029, and Rp(N)
) 0.05148, Rs(F) ) 0.10490 and Rp(F) ) 0.08260, and Rs(P)
) 0.03448 and Rp(P) ) 0.03346. For H, the added polariza-
tion functions are one set of p-type functions with orbital
exponent Rp(H) ) 0.75, augmented with one diffuse s
function Rs(H) ) 0.04415. For bromine, the basis set was
composed of Ahlrichs’ standard double-spd set plus a set of

d-type polarization functions Rd(Br) ) 0.389 plus diffuse
functions Rs(Br) ) 0.0469 and Rp(Br) ) 0.0465.29 The final
contracted basis sets are thus designated as H(5s1p/3s1p),
[C,N,F](10s6p1d/5s3p1d),P(12s8p1d/7s5p1d),andBr(15s12p6d/
9s7p3d).

Natural bond orbital (NBO) analyses30 have been carried
out, with the bond orders and natural charges used to gain
some understanding of the bonding in these molecules. All
computation employed the Gaussian 03 program suite,31 and
all results refer to the gas phase at 0 K.

The difference between the B3LYP and BP86 results is
generally small, and the two sets of predictions show the
same trends. Although all results from the two methods are
shown in the tables, the B3LYP results are mainly discussed
in the text.

Results and Discussion

Ag(CN)NH3. Our theoretical structure for the isolated
Ag(CN)NH3 molecule is shown in Figure 1, and the
corresponding optimized parameters are reported in Table
1. The equilibrium NC-Ag-NH3 complex is predicted by
both the B3LYP and the BP86 methods to be a linear
structure with C3v symmetry, in agreement with the experi-
mental crystal structure reported by Chippindale et al. in
2008.13 Our theoretical results reproduce the experimental
structure reasonably well, with the difference of bond
distances less than 0.1 Å. Table 1 shows that the theoretical
Ag-C distance (2.021 Å) is 0.03 Å shorter than the
experimental value (2.051 Å), while the theoretical Ag-N
distance (2.186 Å) is a 0.07 Å longer than the corresponding
experimental conclusion (2.114 Å).

A key point for this newly observed asymmetric mono-
nuclear Ag(I) complex Ag(CN)NH3 would be the nature of
the bonding between its AgCN and NH3 fragments. The
geometry of the NH3 fragment in the Ag(CN)NH3 complex
is comparable with that of the free NH3 molecule. Table 1
shows that the N-H distance is 1.022 Å in Ag(CN)NH3,

Figure 1. Qualitative structures of M(CN)(XY3) and MCN (M
) Cu, Ag, Au; X ) N, P; Y ) H, F).

Table 1. Geometrical Parameters for M(CN)NH3 (M ) Cu,
Ag, Au)a

B3LYP BP86

species Cu Ag Au Cu Ag Au

M(CN)(NH3) M-C 1.844 2.021 1.962 1.825 1.997 1.948
C-N 1.174 1.173 1.172 1.187 1.186 1.186
M-N 1.954 2.186 2.142 1.943 2.162 2.132
N-H 1.023 1.022 1.022 1.031 1.029 1.030
∠H-N-H 107.1 107.2 107.5 107.0 107.1 107.5

a Bond distances in Å, bond angles in degrees.
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compared with 1.020 Å in the free NH3 (Table 2). The
H-N-H bond angle 107.2° in Ag(CN)NH3 has only a
negligible difference from that in free ammonia (107.4°).
This result suggests that there is no significant orbital overlap,
but rather a dipole attraction between the NH3 ligand and
AgCN, and this argument is supported by the NBO analysis.

The natural bond orbital (NBO) analysis provides detailed
insight into these linear asymmetrical complexes of Ag(CN)-
NH3 (Table 3). The charge distribution of the AgCN fragment
in Ag(CN)NH3 bears a strong resemblance to that of the
isolated AgCN molecule. The bonding of NH3 to AgCN has
little influence on the Wiberg Ag-C bond index, changing
from 0.60 to 0.58. The highest occupied molecular orbitals
(HOMO) of Ag(CN)NH3 and AgCN are very similar (Figure
2). These similarities between Ag(CN)NH3 and AgCN show
that the Ag 5s orbital mainly takes part in the Ag-C bond,
with or without the presence of NH3. The Wiberg bond index
of Ag-N in Ag(CN)NH3 is as small as 0.20, which also
suggests a small overlap between orbitals (or small covalent
bonding) of the Ag and N atoms. The natural charge for the
ammonia N atom is -1.12, and that for the Ag atom is +0.54
(Table 3), supporting the existence of an ionic attraction
between the two fragments AgCN and NH3. However, σ
donation from the ammonia lone pair to the partially vacant
Ag 5s hole is not excluded.

The dissociation energy of Ag(CN)NH3 to free the NH3

ligand is substantial. Table 4 shows that the dissociation
energy for (NH3)AgCN f AgCN + NH3 is 33.4 (B3LYP)
or 35.3 (BP86) kcal/mol. This value indicates that the simple
linear asymmetric Ag(CN)NH3 complex is quite favorable
in energy with respect to such a dissociation. However,

compared with the long-known symmetrical complexes
[Ag(NH3)2]+ and [Ag(CN)2]-, the asymmetric
NC-Ag-NH3 complex has relatively high energy. Table 4
shows that the reaction (NH3)AgCN f 1/2 [Ag(NH3)2]+ +
1/2 [Ag(CN)2]- is exothermic with a significant energy
difference, i.e., 32.1 (B3LYP) and 32.8 (BP86) kcal/mol.
Thus, the newly prepared Ag(CN)NH3 complex does not
display absolute thermodynamical stability. This may explain
why Ag(CN)NH3 was prepared many years after [Ag-
(NH3)2]+ and [Ag(CN)2]- became common chemical reagents.

It is also known that the one-dimensional linear, polymeric
chain structures are common for AgCN and the other group
11 metal cyanides.36,37 The geometry of the chain structure
-Ag-CN-Ag-CN- was determined by the neutron dif-
fraction experiment in 2002.38 Indeed, our theoretical results
have confirmed that the linear AgCN-AgCN dimer has a
decomposition energy (to two AgCN’s) of ∼37 kcal/mol
(Table 4). Similarly, our theoretical results show that the
chain structure (NH3)AgCN-AgCN has a lower energy than
separated (NH3)AgCN and AgCN by about 42 kcal/mol
(Table 4), and thus the monomer Ag(CN)NH3 is only a
metastable structure.

NC-Ag-NF3. When the NH3 ligand in Ag(CN)NH3 is
replaced by the more electronegative NF3 ligand, the linear
C3v Ag(CN)NF3 complex is also predicted as a genuine
minimum (Figure 1 and Table 5). However, there are some
important differences between Ag(CN)NH3 and Ag(CN)NF3.
To begin, the NF3 fragment in Ag(CN)NF3 is geometrically
somewhat different from the isolated NF3. The N-F
distances increase by 0.014 Å, and the F-N-F bond angles
increase by more than 1° (Tables 2 and 5). The Ag-NF3

bond distance (2.294 Å) in Ag(CN)NF3 is longer than the
Ag-NH3 bond distance (2.186 Å) in Ag(CN)NH3 (Table 1)
by more than 0.1 Å, suggesting a weaker interaction between

Figure 2. The HOMOs for Ag(CN)(NH3) and AgCN.

Table 4. Reaction Energies in Kilocalories per Molea

B3LYP BP86

(NH3)AgCN f AgCN + NH3 33.4 35.3
(NH3)AgCN f 1/2[Ag(NH3)2]+ + 1/2[Ag(CN)2]- -32.1 -32.8
2(NH3)AgCN f (NH3)AgCN-AgCN + NH3 -7.7 -6.9
(NH3)AgCN + AgCN f (NH3)AgCN-AgCN -41.1 -42.2
2AgCN f AgCN-AgCN -36.6 -37.0

a All of the molecules are in the gas phase.

Table 2. Geometrical Parameters for Separated MCN (M
) Cu, Ag, Au) and XY3 (X ) N, P; Y ) H, F) for
Comparisona

species B3LYP BP86 exptb theorc

NH3 N-H 1.020 1.028
∠H-N-H 107.4 106.7

NF3 N-F 1.386 1.411
∠F-N-F 101.9 101.8

PH3 P-H 1.423 1.435
∠H-P-H 93.6 92.7

PF3 P-F 1.596 1.613
∠F-P-F 97.5 97.7

CuCN Cu-C 1.832 1.807 1.82962(4) 1.824 (1.8259)
C-N 1.173 1.187 1.16213(3) 1.164 (1.1665)

AgCN Ag-C 2.037 2.007 2.031197(23) 2.024
C-N 1.172 1.186 1.160260(26) 1.164

AuCN Au-C 1.942 1.922 1.9122519(84) 1.911
C-N 1.171 1.186 1.1586545(97) 1.162

a Bond distances in Å, bond angles in degrees. b The
experimental values for CuCN refer to ref 32, and those for AgCN
and AuCN refer to ref 33. c The theoretical values for MCN (M )
Cu, Ag, and Au) were predicted at the CCSD(T)/cc-pVQZ level of
theory in ref 34. The values in parentheses were predicted at the
DK-CCSD(T)/cc-pVQZ level of theory (ref 35).

Table 3. B3LYP Natural Atomic Charges (Q) and Wiberg Bond Indices (WBI) of Selected Bonds of Ag(CN)XY3 (X ) N and
P, Y ) H and F)

QAg QC QN QX QY QAgCN QXY3 WBIAg-XY3 WBIAg-CN

Ag(CN)NH3 0.54 -0.16 -0.50 -1.12 0.41 -0.12 0.12 0.20 0.58
Ag(CN)NF3 0.57 -0.17 -0.47 0.59 -0.17 -0.06 0.06 0.16 0.60
Ag(CN)PH3 0.50 -0.18 -0.49 0.08 0.03 -0.17 0.17 0.36 0.53
Ag(CN)PF3 0.45 -0.20 -0.46 1.85 -0.55 -0.21 0.21 0.45 0.52
Ag(CN) 0.67 -0.20 -0.47 0.60
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the NF3 fragment and the AgCN fragment. On the basis of
the NBO analysis, the Wiberg Ag-N bond index (0.16) for
Ag(CN)NF3 is somewhat smaller than that (0.20) for
Ag(CN)NH3. More importantly, the natural charge for the
N atom in NF3 (QX) is no longer negative, and the charges
for the AgCN and NF3 fragments are only -0.06 and +0.06,
respectively, which are only half of those for Ag(CN)NH3

(Table 3), suggesting that the ionic attraction between the
two parts is much weaker. Accordingly, the dissociation
energy for Ag(CN)NF3 to lose NF3 is only 8.6 (B3LYP) or
10.0 (BP86) kcal/mol (Table 6), compared with the substan-
tial value (∼34 kcal/mol) for Ag(CN)NH3 to lose NH3. This
small dissociation energy may make it difficult to synthesize
Ag(CN)NF3 in a manner analogous to that used for Ag(CN)-
NH3.

NC-M-NH3 and NC-M-NF3 (M ) Cu, Au). Al-
though CuCN ·NH3 has long been a known compound, the
crystal structure for the CuCN ·NH3 complex was reported
to have a copper coordination number of four,39 which is
quite different from the presently considered linear
(NH3)AgCN complex. For gold, no similar complexes have
been reported. In 2007, Mishra used the ab initio methods
to predict the linear structures for XAuY- (X, Y ) Cl, Br,
and I).40

In the present study, like Ag(CN)NH3, the linear asym-
metric Cu(CN)NH3 and Au(CN)NH3 structures (with C3v

symmetry, Figure 1) are predicted to be genuine minima,
and their geometry parameters are reported in Table 1. The
NH3 fragment in Cu(CN)NH3 or in Au(CN)NH3 has almost
the same geometry as that in Ag(CN)NH3, with the change
less than 0.001 Å for the N-H distance and 0.3° for the
H-N-H angle (B3LYP method). This suggests that the
interactions between the NH3 ligand and CuCN and AuCN
are also mainly the classical electrostatic attraction.

Energetically, the Cu(CN)NH3 and Au(CN)NH3 complexes
have dissociation energies for the reaction M(CN)(NH3) f
M(CN) + NH3 (M ) Cu and Au) that are even larger than
that predicted for Ag(CN)NH3. The dissociation energy for
Cu(CN)NH3 is 41.7 (B3LYP) or 43.2 (BP86) kcal/mol, and

that for Au(CN)NH3 is 43.4 (B3LYP) or 44.5 (BP86) kcal/
mol (Table 6). These values are also comparable with the
DFT dissociation energy predicted by Frenking et al. for the
related metal-carbene bond of XM-L (X ) F-I; M ) Cu,
Ag, Au; L ) imidazol-2-ylidene).41 The energy decomposi-
tion analysis (EDA) performed by Frenking et al. shows that
the metal-carbene bonds are mainly held together by
classical electrostatic attraction (>65%), consistent with our
above-noted descriptions of the M-NH3 bonds in the
NC-M-NH3 (M ) Cu, Ag, Au) complexes. Since the
copper and gold analogues of the simple linear asymmetric
complexes of Ag(CN)NH3 have properties similar to those
of Ag(CN)NH3, these analogues are likely to be synthesizable.

The NF3 analogous complexes Cu(CN)NF3 and Au(CN)-
NF3 have also been studied here, and the results are listed in
Table 5. The linear structures are predicted to be genuine
minima on their potential hypersurfaces. Like the situation in
Cu(CN)NH3 and Au(CN)NH3, however, the analogous com-
plexes Cu(CN)NF3 and Au(CN)NF3 suggest classical electro-
static attractions between NF3 and MCN. Table 6 compares
the dissociation energies for M(CN)NF3 (M ) Cu, Ag, Au)
with those predicted for M(CN)NH3. The dissociation energies
of Cu(CN)NF3 and Au(CN)NF3 for losing NF3 are about 15
kcal/mol (B3LYP, Table 6), substantially smaller compared with
the corresponding M(CN)NH3 complexes (>40 kcal/mol, Table
6), but not as small as the dissociation energy (∼9 kcal/mol,
Table 6) for Ag(CN)NF3 to lose NF3.

M(CN)PH3 and M(CN)PF3 (M ) Cu, Ag, Au). We
extended our studies to the phosphorus analogues (i.e., to
replace NH3 and NF3 with PH3 and PF3). The two DFT
methods predict the similar linear C3v minima for Ag(C-
N)PH3 and Ag(CN)PF3, and their structures are reported in
Table 7. The geometry parameters for the PH3 and PF3

ligands in Ag(CN)PH3 and Ag(CN)PF3 (Table 7) are slightly
different from the isolated PH3 and PF3 species (Table 2).
The dissociation energy for Ag(CN)PH3 is substantial, i.e.,
29.0 (B3LYP) or 31.7 (BP86) kcal/mol (Table 6), which is
comparable to that for Ag(CN)NH3. The dissociation energy
for Ag(CN)PF3 is smaller, i.e., 18.2 (B3LYP) or 21.9 (BP86)
kcal/mol, but not as small as that for Ag(CN)NF3 (9 kcal/
mol, Table 6). Nevertheless, these complexes are favorable
with respect to the loss of the PH3 and PF3 ligands. The
Ag-P distances in Ag(CN)PH3 are slightly (∼0.03 Å) longer
than that in Ag(CN)PF3, consistent with the corresponding
Wiberg bond indices (Table 3).

Table 5. Geometrical Parameters for M(CN)NF3 (M ) Cu,
Ag, Au)a

B3LYP BP86

species Cu Ag Au Cu Ag Au

M(CN)(NF3) M-C 1.842 2.021 1.953 1.832 1.998 1.944
C-N 1.173 1.172 1.171 1.186 1.185 1.184
M-N 1.978 2.294 2.171 1.907 2.210 2.112
N-F 1.376 1.372 1.372 1.407 1.397 1.400
∠F-N-F 103.0 103.2 103.2 102.4 102.9 102.7

a Bond distances in Å, bond angles in degrees.

Table 6. Dissociation Energies (in kcal/mol) for M(CN)XY3

and M(Br)XY3 (M ) Cu, Ag, and Au; X ) N and P; Y ) H
and F)

B3LYP BP86

Cu Ag Au Cu Ag Au

M(CN)(NH3) f M(CN) + NH3 41.7 33.4 43.4 43.2 35.3 44.5
M(CN)(NF3) f M(CN) + NF3 15.5 8.6 15.1 18.4 10.0 16.8
M(CN)(PH3) f M(CN) + PH3 33.5 29.0 41.4 36.1 31.7 43.2
M(CN)(PF3) f M(CN) + PF3 24.0 18.2 31.6 27.9 21.9 34.6

Table 7. Geometrical Parameters for M(CN)PH3 and
M(CN)PH3 (M ) Cu, Ag, Au)a

B3LYP BP86

species Cu Ag Au Cu Ag Au

M(CN)(PH3) M-C 1.867 2.046 2.000 1.852 2.026 1.987
C-N 1.174 1.173 1.172 1.187 1.186 1.185
M-P 2.226 2.409 2.333 2.197 2.371 2.315
P-H 1.410 1.409 1.408 1.423 1.421 1.421
∠H-P-H 99.1 99.0 100.0 98.7 98.5 99.5

M(CN)(PF3) M-C 1.864 2.040 1.998 1.852 2.022 1.987
C-N 1.173 1.173 1.171 1.186 1.185 1.184
M-P 2.186 2.382 2.282 2.157 2.339 2.266
P-F 1.567 1.568 1.564 1.584 1.585 1.580
∠F-P-F 100.0 100.0 100.2 100.0 100.1 100.2

a Bond distances in Å, bond angles in degrees.

134 J. Chem. Theory Comput., Vol. 7, No. 1, 2011 Luo et al.



It may be seen from Table 3 that the positive charges on
Ag in Ag(CN)PY3 are slightly less than those for Ag(CN)-
NY3, and the Wiberg bond indices of Ag-P in Ag(CN)PY3

are larger than those of Ag-N in Ag(CN)NY3. For Ag(C-
N)PF3, the WBI(Ag-P) of 0.45 is the largest among the four
Ag(CN)XY3 (X ) N or P; Y ) H or F) species, and the P
atom has the largest positive charge of +1.85 (Table 3).
These results show that the bonds between the Ag and P
atoms in Ag(CN)PY3 are less ionic but more covalent than
the bonds between the Ag and N atoms in Ag(CN)NY3.

The Cu and Au analogues M(CN)PH3 and M(CN)PF3 (M
) Cu, Au) also have the linear asymmetric structure, and
their geometries are reported in Table 7. The PH3 and PF3

ligands in the Cu and Au analogues have almost the same
geometries as those in Ag(CN)PH3 or Ag(CN)PF3. The
dissociation energies for losing the PH3 and PF3 ligands are
reported in Table 6, and these values are comparable with
(or even larger than) those of Ag(CN)PH3 or Ag(CN)PF3.
Therefore, all of these complexes are energetically viable.

Figure 3 compares the B3LYP bond dissociation energies
(BDE) for the 12 M(CN)XY3 species. The complexes
containing the NH3 ligand, i.e., M(CN)NH3 for all three
metals, have the largest M-N bond dissociation energies
(>33 kcal/mol), while the NF3-containing complexes have
the smallest BDEs (as small as 8.6 kcal/mol for Ag(CN)NF3).
This is consistent with the NBO analysis mentioned above.
The ionic interaction between M and N is believed to play
an important role in stabilizing these complexes. The
dissociation energies for M(CN)PH3 are larger than those
for M(CN)PF3, but the difference is not as large as those
between the M(CN)NH3 and M(CN)NF3 species. Thus, the
BDE values for the complexes containing the different
ligands are in the order NH3 > PH3 > PF3 > NF3. Comparing
complexes among the three different coinage metals, the
theoretical BDE values show the order Au > Cu > Ag. This
is in agreement with the general trend for the bond dissocia-
tion energies of the first, second, and third transition metal
rows.42 On the basis of energy considerations, the linear
asymmetric complexes for Cu and Au should be even more
favorable species than their Ag analogues.

Ag(Br)NH3 and Analogues. In Chippindale et al.’s 2008
paper,13 the other critical new structure synthesized was the

analogous asymmetric complex of Ag(I), namely, Ag-
(Br)NH3. The molecular units in the crystal slightly distort
from linearity with an experimental Br-Ag-N bond angle
of 165.01(12)°. However, in the present research, the
theoretically optimized geometry for the isolated Ag(Br)NH3

remains a linear structure with C3v symmetry (Figure 4 and
Table 8). Chippindale et al. have suggested that the slight
distortion from the linear geometry for the crystal Ag(Br)NH3

is caused by a weak intermolecular interaction, i.e., between
a silver atom and a bromine atom in a neighboring molecule
(with 2.971 Å being the intermolecular Ag · · ·Br distance).13

Our predicted Ag-N distance (2.204 Å by B3LYP or 2.171
Å by BP86) is close the crystal Ag-N distance 2.192 Å.
Our predicted Ag-Br distance (2.435 Å by B3LYP and
2.413 Å by BP86) is somewhat shorter than the crystal
Ag-Br distance (2.536 Å),13 and the Ag-Br distance (2.49
Å) in the [AgBr2]- anion.43 The dissociation energy for
Ag(Br)NH3 to lose NH3 is predicted to be 29.6 (B3LYP) or
32.0 (BP86) kcal/mol (Table 10), which is ∼2 kcal/mol
smaller than that for Ag(CN)NH3. This may explain why
the Ag(Br)NH3 complex, while also successfully prepared
experimentally, decomposes at lower temperature than
Ag(CN)NH3.

Like for the M(CN)XY3 analogues, we have investigated
a total of 12 M(Br)XY3 analogues (M ) Cu, Ag, Au; XY3

) NH3, NF3, PH3, PF3) with the same methods. All of these
complexes are predicted to be linear in the heavy atoms, with
C3v symmetry, and their geometry parameters are reported
in Table 8. The M-X distances and the geometry parameters
for XY3 in the 12 M(Br)XY3 complexes are very close to
the corresponding geometry parameters in M(CN)XY3

(Tables 1, 5, and 7). Comparing the geometries of the
M(Br)XY3 complexes with the free MBr and XY3, the trend
of the changes of the corresponding geometrical parameters
is similar to that for the M(CN)XY3 species.

The natural bond orbital (NBO) analyses were also carried
out for the Ag(Br)XY3 complexes (Table 9). It is interesting to
compare the natural atomic charges and Wiberg bond indices
(WBI) for the Ag(Br)XY3 complexes with those for their CN
analogues (Table 3). These two tables are remarkably similar
with a deviation of less than 0.04 for natural atomic charges
and 0.07 for WBIs, if CN is considered the analogue of Br.
Similar to the above discussion for the Ag(CN)XY3 complexes
(Table 3), there is primarily ionic bonding between AgBr and
XY3. The Ag-NH3 interaction is stronger than that for
Ag-NF3, since the latter has significantly smaller atomic
charges for QX, QY, QAgBr, and QXY3 (Table 9). For the
complexes with PH3 and PF3 ligands, the absolute values of
the fragment natural charges QAgBr and QXY3 are substantial
(>0.14), suggesting strong bonding. However, the larger

Figure 3. The dissociation energies of M(CN)(XY3) (M ) Cu,
Ag, Au; X ) N, P; Y ) H, F).

Figure 4. Qualitative structures of BrM(XY3) (M ) Cu, Ag,
Au; X ) N, P; Y ) H, F).
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WBIAg-XY3 values (>0.37) suggest that the bonding between
AgBr and PY3 possesses more covalent character.

The bond dissociation energies (BDE) for all 12 M(Br)XY3

complexes are reported in Table 10 and displayed in Figure
5. Compared with those in Table 6 and Figure 3 for
M(CN)XY3, the BDEs of M(Br)XY3 (Figure 5) have a very
similar pattern. As for the three different coinage metals,
Figure 5 shows that the theoretical BDE values for
M(Br)XY3 follow the irregular order Au > Cu > Ag, as was
the case for the M(CN)XY3 complexes. On the basis of
energy considerations, the linear asymmetric M(Br)XY3

complexes for Cu and Au have good prospects for preparation.

Summary

The present research shows that Ag(CN)NH3 has a C3v linear
asymmetric structure, with theoretical bond distances in good
agreement with the experimental crystal structure. Our
structure for Ag(Br)NH3 is linear in the three heavy atoms,
while the experimental structure is slightly bent (165.0°).
The difference between the theory and experiment has been
rationalized in terms of the intermolecular interactions.13

The bond dissociation energies (BDE) are shown in Tables
6 and 10, as well as in Figures 3 and 5. For Cu and Ag, the
dissociation energies fall in the order NH3 > PH3 > PF3 >
NF3. However, for Au, the dissociation energies for Au(C-
N)XY3 are in the order NH3 ∼ PH3 > PF3 > NF3, and those
for Au(Br)XY3 become different, i.e., PH3 > NH3 ∼ PF3 >
NF3 (Tables 6 and 10). Thus, it is understandable that the
dissociation energies were reported in the order PH3 > PF3

> NH3 > NF3 for ClAu-L reported by Pyykkö et al. at the
BP86/cc-pVDZ level of theory.44

The NBO analysis shows that the interaction between
AgCN and NH3 (or AgBr and NH3) is essentially ionic, and
this is in agreement with the EDA analysis for related
carbenes by Frenking et al.41 The dissociation energy of
Ag(CN)NH3 for losing NH3 is predicted to be substantial
(>30 kcal/mol), suggesting an energetically viable species.

We have also studied a series of analogues of Ag(CN)NH3

and Ag(Br)NH3, i.e., XML (X ) CN, Br; M ) Cu, Ag, Au;
L ) NH3, NF3, PH3, PF3), most of which are experimentally
unknown. All of these analogous compounds are predicted
to have similar C3v linear asymmetric minima. Except for
the NF3-containing complexes, the dissociation energies for
these analogous complexes are substantial, and they should
have synthetic potential, as recently discovered experimen-
tally for Ag(CN)NH3 and Ag(Br)NH3.

Table 8. Geometrical Parameters for M(Br)XY3 (M ) Cu, Ag, Au; X ) N, P; Y ) H, F)a

B3LYP BP86

species Cu Ag Au Cu Ag Au

M(Br)(NH3) M-Br 2.229 2.435 2.411 2.216 2.413 2.398
M-N 1.951 2.204 2.136 1.932 2.171 2.118
N-H 1.023 1.021 1.022 1.031 1.029 1.030
∠H-N-H 107.2 107.4 107.8 107.0 107.2 107.8

M(Br)(NF3) M-Br 2.210 2.424 2.390 2.199 2.399 2.376
M-N 1.956 2.326 2.150 1.872 2.201 2.063
N-F 1.379 1.374 1.377 1.417 1.402 1.410
∠F-N-F 102.7 103.0 102.7 101.9 102.6 102.0

M(Br)(PH3) M-Br 2.237 2.441 2.431 2.224 2.422 2.419
M-P 2.197 2.397 2.292 2.161 2.350 2.268
P-H 1.411 1.410 1.409 1.424 1.422 1.422
∠H-P-H 98.8 98.7 99.8 98.3 98.2 99.3

M(Br)(PF3) M-Br 2.221 2.421 2.411 2.211 2.402 2.399
M-P 2.156 2.364 2.242 2.122 2.312 2.222
P-F 1.570 1.570 1.567 1.588 1.588 1.584
∠F-P-F 99.6 99.7 99.8 99.5 99.7 99.8

MBr M-Br 2.216 2.449 2.412 2.198 2.428 2.394

a Bond distances in Å, bond angles in degrees.

Table 9. B3LYP Natural Atomic Charges (Q) and Wiberg
Bond Indices (WBI) of Selected Bonds of Ag(Br)XY3 (X )
N and P, Y ) H and F)

QAg QBr QX QY QAgBr QXY3 WBIAg-XY3 WBIAg-Br

Ag(Br)NH3 0.58 -0.68 -1.13 0.41 -0.10 0.10 0.20 0.51
Ag(Br)NF3 0.60 -0.65 0.59 -0.18 -0.04 0.04 0.15 0.57
Ag(Br)PH3 0.53 -0.68 0.06 0.03 -0.14 0.14 0.37 0.49
Ag(Br)PF3 0.48 -0.65 1.83 -0.55 -0.17 0.17 0.46 0.50
AgBr 0.66 0.60

Table 10. Dissociation Energies (in kcal/mol) for M(Br)L
(M ) Cu, Ag, and Au; L ) NH3, NF3, PH3, PF3)

B3LYP BP86

Cu Ag Au Cu Ag Au

M(Br)(NH3) f M(Br) + NH3 39.1 29.6 39.3 41.7 32.0 42.2
M(Br)(NF3) f M(Br) + NF3 15.0 6.9 13.3 20.3 9.1 17.7
M(Br)(PH3) f M(Br) + PH3 33.6 27.2 42.3 38.0 31.2 46.8
M(Br)(PF3) f M(Br) + PF3 25.7 17.5 34.4 31.8 22.9 40.3

Figure 5. Dissociation energies of M(Br)(XY3) (M ) Cu, Ag,
Au; X ) N, P; Y ) H, F).
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Mike Devereux,*,† Marie-Céline van Severen,‡ Olivier Parisel,‡

Jean-Philip Piquemal,*,‡,§ and Nohad Gresh*,†
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Abstract: Reduced Variational Space (RVS) calculations are reported that afford insight into
the energetic origins of the hemi- and holo-directing behavior of [Pb(H2O)n]2+ complexes. It is
shown that the distribution of ligands around the Pb2+ center arises from a delicate balance
between the first-order Coulomb plus exchange-repulsion energy that favors holo-directionality,
and the second-order charge transfer plus polarization term that favors hemi-directionality. It is
additionally demonstrated that the pseudopotential/basis set combination used to study such
complexes should be carefully selected, as artifacts can arise when using large-core pseudo-
potentials. Finally, based on these findings, we introduce a new SIBFA force field parametrization
for Pb2+. Results yield close agreement with ab initio complexation energies in a series of
[Pb(H2O)n]2+ complexes and successfully encapsulate the hemi- and holo-directing properties.
SIBFA thus appears to be the first classical force field to be able to model the holo-/hemi-
directed transition within Pb complexes, avoiding the need for explicit wave function treatment
and consequently providing the opportunity to deal with large leaded systems of biological
interest.

Introduction

As lead is an abundant metal that is easily extracted and has
a low melting point and high malleability, it has been widely
used for everything from making cooking utensils, paints,
or water pipes to electrochemical cells, and as an additive
to gasoline in internal combustion engines. As a result, it
has become widely dispersed in the environment,1 and due

to the high toxicity associated with Pb2+, poses a significant
threat to human health.2 Pb accumulated in the body causes
lead poisoning, or saturnism, an intoxication that is especially
severe among children3 and threatens many people in
developing nations where contact with lead-contaminated
soils and drinking water is most common.4

Lead is easily oxidized to form Pb2+ aquacations. Pb2+

then competes with and displaces native cations such as Zn2+

in important proteins such as Aminolevulinic Acid Dehy-
dratase (ALAD),5-9 inhibiting normal protein function.
Explaining the affinity and structural changes associated with
binding of Pb2+ in complex biological environments and
designing chelating agents that are able to selectively extract
Pb2+ in preference to other metal cations is a particularly
challenging task.10 The high atomic number of Pb2+ (Z )
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‡ Université Pierre et Marie CuriesParis 06, UMR 7616,

Laboratoire de Chimie Théorique.
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82) makes full-electron, relativistic ab initio calculations
prohibitive for all but the smallest complexes. There is also
an unusual tendency of Pb2+ complexes to switch between
even spacing of ligands around the metal center in a so-
called holo-directed conformation, and a second class of
structures where ligands are directed to one side of the metal
in a sterically crowded hemi-directed conformation. The
preference for holo- or hemi-directionality depends on many
parameters, such as the number of coordinating ligands and
resulting steric crowding, the ligand flexibility, and additional
repulsion between ligands that carry a formal charge.11 The
reason Pb2+ exhibits this unusual behavior is often attributed
to a sterically active lone-pair,12,13 making it difficult to
model using traditional classical force fields. The availability
of a reliable molecular mechanics approach would allow
studies of Pb2+ binding with greater conformational sampling
and in more complex environments than those currently
accessible by means of electronic structure methods.

As force fields typically combine separate energetic terms
to estimate the total interaction energy between moieties, a
deeper understanding of the energetic contributions favoring
holo and hemi orientation in different complexes is an
important first step toward parametrizing a reliable force field.
One methodology that can be applied in this context is the
Reduced Variational Space (RVS) scheme of Stevens and
Fink.14 RVS decomposes the total ab initio interaction energy
between fragments into first-order Coulomb and Pauli-
repulsion terms, and second-order polarization and charge-
transfer components. All of these contributions are accounted
for using approximate expressions in the SIBFA (Sum of
Interactions Between Fragments Ab initio computed) polar-
izable force field.15-19 As a result, RVS has been success-
fully used for the energetic decomposition of various systems
including Zn2+-complexes,20 water clusters21 and hard and
soft metal cations,22 to allow parametrization of SIBFA and
for subsequent evaluation of force field accuracy.

SIBFA is a detailed, fragment-based force field that has
been widely applied to proteins and organometallic systems,
from small complexes to proteins/metalloproteins23-26 (see
ref 19 for a detailed review article). The force field energetic
terms explicitly account for anisotropic fragment polarization,
repulsion, and charge transfer, as well as for distributed
multipole moments centered at both nuclear positions and
bond barycenters. While computationally more expensive
than many popular classical force fields such as CHARMM27

and AMBER,28 SIBFA yields molecular structures and
energies that are generally in close agreement with ab initio
data while maintaining a much lower computational overhead
than would be required for a full ab initio computation.
Although the interest in polarizable, anisotropic force fields
has recently grown,29-31 SIBFA remains one of the most
developed and widely applied. Parameters exist for a wide
range of organic compounds and closed-shell organometallic
systems that contain metals such as Mg(II), Ca(II), Zn(II),
and Cd(II). A recent extension, “SIBFA-LF”, includes ligand
field effects by means of the angular overlap model32,33

(AOM) and has allowed extension of the range of applica-
tions to transition metal cations with partially filled d-shells,
such as Cu(II).15 In addition, short-range energetic corrections

allow SIBFA to describe the formation of ligand-metal
complexes without resorting to separate bonded and non-
bonded parameters. A single, consistent parameter set can
thus be used to explore for example binding, dissociation
and relative energies of different tautomers and conformers.
The goal of the current work is to use information gained
about the formation of Pb2+-complexes from RVS calcula-
tions to extend the range of application of SIBFA to Pb2+

compounds, offering a capability for molecular mechanics
to model the holo- to hemi-directing transition.

Computational Procedures

Electronic Structure Calculations. To explore the per-
formance of different pseudopotentials, [Pb(H2O)n]2+ com-
plexes were geometry-optimized using the Gaussian03 pro-
gram34 at the restricted Hartree-Fock (RHF) and B3LYP35,36

levels of theory. Four different pseudopotential (PP)/basis
set combinations were tested. Three large-core PPs were
used: the Stuttgart relativistic large-core PP37 (henceforth
SDD), the large-core relativistic PP of Ross and co-workers38

(henceforth CRENBS), and for consistency with previous
SIBFA parametrization studies, the SBK compact relativistic
PP.39 Basis sets and PPs for Pb were taken from the Basis
Set Exchange40,41 and are included as Supporting Informa-
tion. Remaining atom types were described using a 6-31+G**
basis set for the SDD and CRENBS PPs, as successfully
applied in previous work on [Pb(H2O)]2+.42 SBK calculations
employed an effective core potential for oxygen atoms43 with
a CEP 4-31G(2d) basis set for both oxygen and hydrogen.
For comparison, a small-core relativistic PP of Peterson,44

designed for used with aug-cc-pVnZ basis sets was selected
and used with a triple-� basis set for lead and remaining
atoms. Binding energies were evaluated as the difference in
energy between the bound complex and isolated, geometry-
optimized monomers.

Comparison of the performance of different ab initio and
DFT methods was carried out similarly using the small-core
PP of Peterson with aug-cc-pVTZ basis set for Pb2+ and
bound ligands. The DFT methods tested with this PP/basis
set combination were the M05-2X,45 M06,46 B3LYP,35,36,47

and PBE48,49 density functionals available in Gaussian03.34

Resticted Hartree-Fock, CCSD,50,51 CCSD(T),52 and MP253,54

calculations were performed with the same PP and aug-cc-
pVTZ basis set. Finally, the [Pb(H2O)]2+ monohydrated
complex was geometry-optimized with each method using
a larger aug-ccpVQZ basis set and with the same small-core
PP. This PP/quadruple-� basis set combination was addition-
ally used with B3LYP to optimize [Pb(H2O)n]2+ complexes
(n ) 1,2,4).

RVS calculations were performed using Gamess55 to
decompose the RHF interaction energy. The RVS procedure
is related to Morokuma decomposition56 but maintains the
antisymmetry of the wave function, and in this respect is
similar to the Constrained Space Orbital Variation (CSOV)
method of Bagus.57 PPs and basis sets used in Gamess were
again taken from the Basis Set Exchange.

The Electron Localization Function (ELF), originally
proposed by Becke and Edgecombe58 offers useful insight
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into the effect of complexation on the behavior of the Pb2+

lone-pair. The basin associated with the lone pair V(Pb) is
obtained by topological analysis to allow both quantitative
study and visualization of the basin’s position and shape.58-64

In the present contribution, the ELF calculations and their
analysis were performed using a modified version of the
TOPMOD package59,65,66 with electronic densities calculated
by Gaussian03.

SIBFA. The SIBFA force field has been described in detail
elsewhere,15-17,19,24,67 only a brief overview will be given
here with additional details available as Supporting Informa-
tion. SIBFA is an anisotropic, polarizable force field in which
molecules are broken down into rigid fragments that are free
to rotate about their connection points (torsional degrees of
freedom). Both inter- and intramolecular energies are evalu-
ated as the sum of interactions between constituent chemical
fragments. Unusually for a force field, SIBFA explicitly
accounts for electrostatic (Emtp), repulsion (Erep), charge-
transfer (Ect), and polarization (Epol) energies in evaluating
the total interaction energy ∆Etot:

The final term “Edisp” represents an estimation of the
dispersion energy to afford improved agreement with post-
HF methodologies.67

The electrostatic term Emtp is evaluated using a multipole
expansion, with both atom- and bond-centered multipole
moments included up to quadrupole. Multipole moments are
derived from the ab initio charge density according to the
procedure of Vigné-Maeder and Claverie.68 The sharing of
multipoles between both atoms and bond centers ensures
improved short-range convergence. A recently extended
formulation18 adds a penetration contribution to account for
the overlap of molecular charge densities, further improving
evaluation of short-range electrostatic interactions.

The short-range repulsion term Erep accounts for Pauli-
repulsion between same-spin electrons, and is modeled in
SIBFA by means of a sum of bond-bond, bond-lone pair
and lone pair-lone pair interactions. Bond sites are located
at the barycenters between bonded atoms within a fragment.
The positions of electron lone pairs are defined using Boys
localization of orbital centroids.69-71 Use of bonds and lone-
pairs in place of atom-centered repulsion sites allows
increased anisotropy and a more accurate representation of
the repulsion energy.24,67

The charge transfer term Ect is especially important where
metal-ligand bonds exhibit some degree of covalent char-
acter. Electron density from the bound ligands can be
transferred to the central metal cation M, and back-donation
to or from the d-orbitals of transition metals can provide an
additional energetic contribution.17,72,73 Charge transfer in
SIBFA is evaluated by approximating orbital overlap using
the distance and angles between localized lone pair orbitals
of the interacting entities.17,72,74,75

Polarization of the fragments’ electron density makes the
final major contribution to the total interaction energy in the
standard SIBFA force field. The polarizability tensors are
located on the centroids of the Boys localized orbitals
(chemical bonds and heteroatom lone pairs). They are derived

from the quantum chemical wave function of each fragment
using a procedure developed by Garmer and Stevens.69

Recent data show that, if off-centered lone pair polarizabili-
ties are explicitly represented, classical polarizable force
fields can afford a close agreement with the ab initio results,
both in terms of polarization energy and in terms of dipole
moment (see ref 71 for details). The polarization energy takes
the form of an interaction between an induced dipole and
the electric field generated by surrounding moieties; for metal
cations an additional induced quadrupole interacting with the
field gradient is considered (see references 19, 75 and
references therein). A Gaussian screening term intervenes
in the evaluation of the electric field arising from a given
multipolar site at very close range to prevent close contact
between charge-carrying sites of one moiety and polarizable
sites of another, which could give rise to unphysically large
polarization energies.17,24

Results

Pseudo-Potential Comparison. A series of [Pb(H2O)n]2+

clusters (1en e 6) were energy-minimized using the SDD,
CRENBS, and SBK large-core PPs, as well as using one
small-core PP with aug-cc-pVTZ basis set. Binding enthal-
pies of Pb2+ were calculated as described in the Methods
section. In the case of the hexacoordinated [Pb(H2O)6]2+

complex two stable structures were found (Figure 1). The
holo-directed [Pb(H2O)6]2+ structure was found to be a stable
minimum at both Hartree-Fock and B3LYP levels of theory
(confirmed by frequency calculations) with all PPs. The hemi-
directed structure was found to be a stable minimum using
the Hartree-Fock method with all PPs, and with B3LYP
when using all PPs except the small-core PP with aug-cc-
pVTZ basis set. Additional MP2 optimizations with the
small-core PP and aug-cc-pVTZ basis set did find a stable
minimum, however, so the MP2 geometry of the hemi-
directed structure was used to perform B3LYP single point
calculations for comparison with the other methods. ELF
isosurfaces are shown in Figure 1 to illustrate topological
features of the sterically active Pb2+ lone pair upon the
transition from the holo to the hemi-directed structure of
[Pb(H2O)6]2+. Similar plots for [Pb(CO)5]2+ and [Pb(CO)6]2+

are provided as Figure S1 in Supporting Information and in
previous work.76

Table 1 shows a comparison of the performance of the
different PPs against previously published full-electron, four-
component results for the [Pb(H2O)]2+ complex.42 It can be
seen that, while the small-core PP performs slightly better,
SDD and CRENBS PPs also offer good agreement with the
four-component results. SBK B3LYP results afford similar
accuracy to CRENBS and SDD, although the binding energy
is overestimated. The largest error of 6 kcal/mol arises with
SBK and RHF. Pb-O distances are in good agreement for
all PPs.

The final two columns of Table 1 show a comparison of
binding energies using different PPs for the holo- and hemi-
directed [Pb(H2O)6]2+ clusters. There is now significant
quantitative disagreement in the Pb2+ binding energy,
ranging, for example, from -207.7 kcal/mol for the hemi-
directed structure with the SDD PP combined with B3LYP

∆Etot ) Emtp + Erep + Epol + Ect + Edisp (1)
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to -254.8 kcal/mol for the same complex with the SBK PP
and B3LYP. Significantly, the predicted relative energies of
the holo- and hemi-directed structures also differ. While the
small-core PP suggests that the holo-directed structure is
around 3.4 kcal/mol more stable than the hemi-directed
structure, SDD and CRENBS with B3LYP predict the holo-
directed structure to be approximately iso-energetic with the
hemi-directed conformation. In contrast, SBK predicts the
hemi-directed structure to be 2.8 kcal/mol more stable than
the holo arrangement. The PP chosen therefore has a non-
negligible impact on both the magnitude of the binding
energy and the relative energies of different holo- and hemi-
directed conformations of the same complex, necessitating
careful selection.

Final selection of an appropriate PP was made on the basis
of RVS data. Figure 2 shows the RVS Coulomb and
repulsion energies in the [Pb(H2O)]2+ complex as a function
of Pb-O distance. While the Coulomb energy becomes
exponentially more attractive with decreasing ligand-cation
distance using the small-core PP, as should intuitively be
the case, the large-core PPs cause artifacts to arise at short
distance as the electron density of the ligand begins to overlap
the effective core potential. The divergence between data
from large and small core PPs starts to occur at around 2.4
Å, the optimized bond length in many of the Pb-H2O
complexes. The repulsion energy is also significantly lower
at short-range using the large-core PPs than using the small-
core PP. This leads to some cancellation of errors with the

correspondingly lower Coulomb contribution, but divergence
in the repulsion energy starts at longer range than divergence
in the Coulomb energy (about 2.6 Å). As the small-core PP
affords the best agreement with four-component calculations
for the [Pb(H2O)]2+ complex and appears free from artifacts
arising from ligand-PP core overlap at the distances of
interest, it was selected to provide reference data for the series
of [Pb(H2O)n]2+ complexes.

Ab Initio/Density Functional Method Comparison.
Having selected the small-core PP with aug-cc-pVTZ basis
set, the stability of data to changes in electronic structure
method was next investigated. Results are presented in Table
2. The less computationally expensive DFT methodologies
were applied to all systems up to [Pb(H2O)5]2+, whereas
CCSD optimizations were only possible up to [Pb(H2O)2]2+,
and CCSD(T) was only possible for the [Pb(H2O)]2+

complex with this PP/basis set combination. The table shows
that all methods yield similar results. In particular, all DFT
methods agree closely with one another. They afford complex
formation energies around 3 kcal/mol lower than CCSD and
CCSD(T) results for the [Pb(H2O)]2+ complex, with MP2
results lying between the two. Hartree-Fock binding ener-
gies are somewhat underestimated with respect to the other
methods. The close agreement between DFT and MP2 results
is also visible for the larger clusters, suggesting that choice
of electronic structure method has a smaller impact on
calculated binding energies than the choice of PP.

Figure 1. ELF isosurfaces (η ) 0.085) showing the Pb2+ lone pair basin V(Pb) in holo- (left) and hemi-directed (right) [Pb(H2O)6]2+

structures. Pb2+ is shown in green with V(Pb) localized in the surrounding volume.

Table 1. Comparison of Binding Energy and Pb-O Distance (Å) in the [Pb(H2O)]2+ Complex, and Binding Energies in holo-
and hemi-Directed [Pb(H2O)6]2+ Complexes Using Different Pseudopotentials

pseudopotential method

[Pb(H2O)]2+ (BSSE corr) (H2O)6 hemi (H2O)6 holo

r(Pb-O) ∆E (kcal/mol) ∆E (kcal/mol) ∆E (kcal/mol)

SBK RHF 2.320 -59.5 -238.1 -234.5
B3LYP 2.283 -66.8 -254.8 -252.0

CRENBS RHF 2.388 -51.1 -207.3 -207.6
B3LYP 2.367 -56.1 -218.5 -219.3

SDD RHF 2.384 -49.9 -197.6 -197.8
B3LYP 2.359 -55.0 -207.7 -208.2

aug-cc-pVTZ RHF 2.336 -51.9 -198.5 -197.8
B3LYP 2.322 -58.5 -211.6 -215.0

full-e- relativistica DHF 2.347 -53.5
DB3LYP 2.338 -61.0

a Values taken from earlier work of Gourlaouen et al.42
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Finally, the convergence of the basis set was examined
further by running a limited number of optimizations using
the larger aug-cc-pVQZ basis set with B3LYP and the small-
core PP. Again, little change in binding energies is observed,
with differences between the aug-cc-pVTZ and aug-cc-pVQZ
results generally within 1 kcal/mol. Similar results (not
shown) were obtained using this basis set and the other
electronic structure methods for the monohydrated complex.
The B3LYP method with aug-cc-pVTZ basis set therefore
appears to represent an acceptable level of theory to provide
reference data for subsequent force field parametrization. In

addition to good agreement with other methods tested here,
it has been widely applied to the many organic ligands that
will be of interest when applying the force field to studies
of biological systems.

RVS Analysis of holo- and hemi-Directed Structures.
The energetic origins of the stabilization of hemi-directed
complexes over their holo-directed counterparts were next
investigated using RVS analysis. A series of [Pb(H2O)4]2+,
[Pb(H2O)5]2+, and [Pb(H2O)6]2+ complexes were selected
for study (Figure 3). The energy-minimized hemi-directed
structures of all complexes obtained with the small-core
PP and aug-cc-pVTZ basis set and B3LYP method were
used, although, as already stated, an MP2 geometry had
to be taken for [Pb(H2O)6]2+ as no stable hemi-directed
structure was found for this complex using a small-core
PP with B3LYP. The holo-directed structure of
[Pb(H2O)6]2+ was used for comparison with the hemi-
directed structure, along with an artificially created
tetrahedral [Pb(H2O)4]2+ complex and a trigonal-bipyra-
midal [Pb(H2O)5]2+ structure that were obtained by
constrained optimization of Pb-ligand bond lengths. These
artificial holo-directed structures were created to allow
direct RVS comparison for each complex between a holo-
and the corresponding hemi-directed ligand arrangement.

The results of the RVS analysis are shown in Table 3.
Interestingly, in all three complexes the lower ligand-ligand
repulsion energy associated with the holo-directed com-
plexes more than compensates for the slightly lower
Coulomb energy, meaning that the total first-order con-

Figure 2. Coulomb (top) and repulsion (bottom) RVS con-
tributions to the total interaction energy using different pseudo-
potentials: small-core with aug-cc-pVTZ (black), SDD (red),
CRENBS (green), and SBK (blue) pseudopotentials with
different basis sets are compared (see text for details).

Table 2. Comparison of [Pb(H2O)n]2+ Complex Formation
Energies Relative to Gas Phase Monomer Energies Using
the aug-cc-pVTZ Small-Core Pseudopotential and Basis
Set with Different ab Initio and Density Functional
Methodsa

[Pb(H2O)]2+ [Pb(H2O)2]2+ [Pb(H2O)4]2+ [Pb(H2O)5]2+

RHF -51.9 -95.0 -157.8 -180.4
B3LYP pVTZ -58.5 -105.5 -171.6 -195.4
B3LYP pVQZ -58.8 -106.0 -172.2 -
M05-2X -59.3 -108.4 -180.5 -206.9
M06 -58.6 -106.9 -177.9 -204.0
PBE -59.3 -107.4 -175.8 -200.1
MP2 -56.6 -103.5 -172.4 -197.9
CCSD -55.3 -100.6
CCSD(T) -55.7
full e- DB3LYPb -61.0

a The same pseudopotential with a larger aug-cc-pVQZ basis
set is also shown. b Values taken from earlier work of Gourlaouen
et al.40

Figure 3. [Pb(H2O)4]2+ (top), [Pb(H2O)5]2+ (middle) and
[Pb(H2O)6]2+ (bottom) holo- and hemi-directed structures used
to investigate the energetic origins of holo- and hemi-
directionality.
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tribution favors holo-directionality. This is also the case
in the tetrahedral and trigonal-bipyramidal [Pb(H2O)4]2+

and [Pb(H2O)5]2+ complexes. Second-order energetic
terms (polarization and charge-transfer) therefore account
for the stabilization of hemi-directed structures in this
series of complexes. The polarization energy makes the
largest second order stabilizing contribution, with most
of the difference between holo- and hemi-directed con-
formations arising from polarization of the Pb2+ cation.
This result can be rationalized, as arranging ligands on
one side of the Pb2+ cation generates a net electric field
at the position of the metal cation whereas field-cancel-
lation arises almost completely from evenly spacing
ligands in opposing positions in a holo-oriented complex.
Indeed, the difference in cation polarization energy
between the [Pb(H2O)4]2+ and [Pb(H2O)5]2+ holo- and
hemi-directed complexes is roughly equal to the difference
in total binding energy favoring the hemi-directed struc-
ture. Charge-transfer, too, is non-negligible, and adds a
smaller contribution of around 2 kcal/mol favoring hemi-
directionality. As a relatively large basis set is used, BSSE
distortion of the charge transfer energy is small (of the

order of 0.01 kcal/mol) so the estimates are considered
to be reliable. It should be noted that RVS total interaction
energies are expected to differ slightly to the Gaussian03
binding energies reported above, as the complexation
energy in RVS calculations is calculated as the difference
between the isolated monomers in their supermolecular
conformations, rather than in their gas phase-optimized
geometries as reported in Tables 1 and 2.

Parametrization of SIBFA. An accurate representation
of cation polarization and charge transfer, then, is key to
modeling the energies of Pb2+ complexes. While such
terms are missing from simpler force fields, detailed
approaches such as SIBFA are better equipped for such
tasks. The adjustable parameters required in SIBFA to
describe the separate energetic contributions of eq 1 were
therefore fitted using RVS results for the [Pb(H2O)]2+

complex as a function of Pb-O distance. The results of
this fitting are shown graphically in Figure 4 and are
tabulated in Table 4. A good fit was possible for all terms,
although the polarization energy deviates slightly from
the corresponding RVS value at short-range. The cation
quadrupolar polarization energy terms were fitted similarly
using a [Pb(H2O)2]2+ complex with H2O ligands placed
opposite one another to neutralize the field generated at
the Pb2+ position, leaving a field gradient. An acceptable
fit was again achieved as a function of the Pb-O bond
length.

Validation of the SIBFA parameters was performed by
modeling the six complexes of holo- and hemi-directed
[Pb(H2O)4]2+, [Pb(H2O)5]2+, and [Pb(H2O)6]2+ presented
in Figure 3. As shown in Table 5, very satisfactory
agreement is observed between SIBFA and RVS results.
All contributions are well represented, including the

Table 3. RVS Energy Decomposition of holo- and
hemi-Directed Structures of [Pb(H2O)4]2+, [Pb(H2O)5]2+,
and [Pb(H2O)6]2+ Complexes (kcal/mol)

[Pb(H2O)4]2+ [Pb(H2O)5]2+ [Pb(H2O)6]2+

[Pb(H2O)4]2+ hemi holo hemi holo hemi holo

Coulomb -179.7 -171.4 -206.4 -198.8 -229.0 -224.3
repulsion 103.5 87.5 106.1 91.9 108.2 94.5
polarization -70.2 -61.2 -71.2 -63.9 -70.4 -64.6
Pb-polarization -7.4 -1.6 -6.1 -1.2 -6.0 -0.6
charge-transfer -18.3 -15.8 -18.5 -16.3 -18.2 -16.7
total interaction -159.7 -153.8 -182.5 -177.7 -200.1 -199.4

Figure 4. RVS (black) vs SIBFA (red) Coulomb (top left), polarization (top right), repulsion (bottom left) and charge-transfer
(bottom right) energies as a function of the Pb-O distance in [Pb(H2O)]2+.
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polarization energy of each system before and after
iteration of the complex’s electric field to self-consistency.
The “RVS” polarization energy is the same polarization
energy reported in Tables 3 and 4 and arises from the
polarization of each monomer due to the unperturbed
electric field created by each surrounding unpolarized
monomer. The ‘variation-like’ (VL) value arises from
polarization of each monomer by the electric field gener-
ated by each of the surrounding polarized monomers. This
second value requires an iterative, self-consistent proce-
dure in SIBFA. Not only are absolute values of the
different contributions of the interaction energy in good
quantitative agreement with RVS results, but importantly
the relative energies of the different holo- and hemi-
directed structures are also in good agreement. The hemi-
directed structures are successfully predicted to be more
stable in both the [Pb(H2O)4]2+ and [Pb(H2O)5]2+ com-
plexes, while the iso-energetic [Pb(H2O)6]2+ holo- and
hemi-directed structures are predicted to be separated by
1.5 kcal/mol only. SIBFA is therefore able to encapsulate
the energetic processes underlying stabilization of hemi-
directed structures, at least for the Pb-H2O complexes

presented, by means of an accurate treatment of cation
polarization.

As a final point of interest, QM/MM calculations were
used to investigate whether point charge representations
of the H2O ligands, of the type widely applied in classical
force fields, were sufficient to induce a characteristic hemi-
directed shift in lone-pair distribution such as that visible
in Figure 1. These QM/MM calculations were performed
with Gaussian03 at the B3LYP level of theory. Pb2+ was
again represented using the small-core pseudopotential and
aug-cc-pVTZ basis-set, while Kollman77 charges fitted to
B3LYP/aug-cc-pVTZ data were used to represent ligand
atoms. As shown in Figure 5, a hemi-directed arrangement
of point charges representing the H2O ligands is insuf-
ficient to significantly displace the Pb2+ lone pair basin
in the [Pb(H2O)5]2+ complex. The ELF analysis of the
QM-represented cation therefore shows an essentially
spherical lone-pair distribution, with the cation nucleus
located roughly at the center. This result demonstrates that,
while an accurate treatment of cation polarization is vital
to describe Pb-ligand interactions, a realistic representation

Table 4. SIBFA vs RVS Data at Different Pb-O Separations r in the [Pb(H2O)]2+ Complexa

E(mtp) E(rep) E(pol) E(ct)

r (Å) RVS SIBFA RVS SIBFA RVS SIBFA RVS SIBFA

2.2 -68.89 -66.88 65.08 64.25 -36.46 -31.43 -9.01 -8.90
2.3 -59.11 -58.54 45.98 45.87 -30.34 -27.20 -7.55 -7.75
2.4 -51.55 -51.82 32.44 32.84 -25.43 -23.56 -6.38 -6.71
2.5 -45.63 -46.34 22.87 23.57 -21.45 -20.44 -5.46 -5.77
2.6 -40.91 -41.81 16.09 16.95 -18.18 -17.76 -4.71 -4.94
2.7 -37.09 -38.02 11.31 12.22 -15.51 -15.47 -4.08 -4.21
2.8 -33.94 -34.81 7.94 8.82 -13.31 -13.50 -3.52 -3.58
2.9 -31.29 -32.06 5.57 6.38 -11.50 -11.81 -3.01 -3.03
3.0 -29.02 -29.69 3.90 4.62 -10.01 -10.36 -2.55 -2.56
3.1 -27.05 -27.61 2.73 3.35 -8.77 -9.11 -2.15 -2.16
3.2 -25.32 -25.78 1.91 2.44 -7.73 -8.04 -1.80 -1.81
3.3 -23.78 -24.23 1.33 1.87 -6.83 -7.18 -1.48 -1.55
3.4 -22.39 -22.70 0.93 1.29 -6.08 -6.31 -1.22 -1.27
3.5 -21.14 -21.38 0.65 0.94 -5.43 -5.62 -0.99 -1.07
3.6 -20.00 -20.19 0.45 0.69 -4.85 -5.02 -0.80 -0.89
3.7 -18.95 -19.11 0.31 0.50 -4.36 -4.50 -0.65 -0.74
3.8 -17.99 -18.12 0.22 0.37 -3.93 -4.04 -0.52 -0.62
3.9 -17.10 -17.21 0.15 0.27 -3.54 -3.64 -0.42 -0.51
4.0 -16.28 -16.36 0.11 0.20 -3.20 -3.28 -0.33 -0.43

a Coulomb (Emtp), repulsion (Erep), polarization (Epol), and charge-transfer (Ect) energies (kcal/mol) are compared at each separation.

Table 5. Comparison of RVS Energy Decomposition and Corresponding SIBFA Energetic Components for [Pb(H2O)n]2+

Complexes in holo- and hemi-Directed Conformations (kcal/mol)a

[Pb(H2O)4]2+ [Pb(H2O)5]2+ [Pb(H2O)6]2+

RVS SIBFA RVS SIBFA RVS SIBFA

hemi holo hemi holo hemi holo hemi holo hemi holo hemi holo

Coulomb (Emtp) -179.7 -171.4 -181.1 -172.8 -206.4 -198.8 -210.0 -201.9 -229.0 -224.3 -235.9 -229.2
repulsion (Erep) 103.5 87.5 103.1 85.1 106.1 91.9 106.9 91.1 108.2 94.5 111.8 95.3
pol. RVS (Epol*) -70.2 -61.2 -64.9 -59.7 -71.2 -63.9 -67.6 -63.2 -70.4 -64.6 -67.7 -64.8
pol. VL (Epol) -65.3 -54.2 -67.6 -55.0 -64.3 -54.5 -66.1 -56.1 -61.1 -53.1 -63.3 -55.9
Pb-polarization -7.4 -1.6 -5.3 0.0 -6.1 -1.2 -4.5 -0.1 -6.0 -0.6 -4.7 0.0
charge-transfer (Ect) -18.3 -15.8 -17.0 -16.4 -18.5 -16.3 -18.1 -17.5 -18.2 -16.7 -19.0 -18.2
total -159.7 -153.8 -162.7 -159.1 -182.5 -177.7 -187.3 -184.5 -200.1 -199.4 -206.4 -207.9

a The polarization energy is shown before iteration (Pol. RVS/Epol*) and after iteration (Pol. VL/Epol) to self-consistency of the electric field
(see text for details). In column 1, headings describe the RVS contributions to the total interaction energy, with values in parentheses
indicating which term in SIBFA this corresponds to (see eq 1).
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of ligand electrostatics and other energetic contributions
must also be maintained.

Conclusions

A series of hydrated Pb2+ complexes have been used to
study the underlying physical origins of the stabilization
of holo- or hemi-directed arrangements of ligands from
an energy decomposition perspective. The RVS analysis
demonstrates that the stabilization of hemi-directed struc-
tures can be explained largely in terms of cation polariza-
tion arising from the electric field (and to a lesser extent
from the field gradient) generated by the hemitropic ligand
arrangement. Corresponding holo-directed structures, while
reducing ligand-ligand repulsion, lead to small or zero
net electric fields and, consequently, lower polarization
energy.

Parameters fitted for the SIBFA force field have
demonstrated that an accurate representation of the cation
polarization can encapsulate the hemi-stabilizing effect.
Good quantitative agreement was achieved in total com-
plex binding energies and in relative holo- and hemi-
directed complex energies in the series of hydrated Pb
clusters studied. Extension of the force field to additional
ligand types is currently underway, allowing molecular
mechanics investigation of the interactions of Pb2+ cations
within complexes11,76 and biological systems78 and aiding
in the search for selective chelating agents that can be
used in vivo to cure lead poisoning.

Finally, it is found that the level of theory employed, in
particular the choice between large-core and small-core PPs,
can have a significant impact on calculated binding energies
and especially on RVS values at short ligand-Pb2+ distances.
RVS results suggest that this discrepancy arises primarily
from artifacts associated with the overlap of ligand electronic
density and that arising from the large-core PPs at short-
range. Small-core PPs therefore represent a safer choice for
studies of this kind.
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de Chimie Théorique, Université Pierre et Marie Curie (UMR
7616, CNRSsParis 6 -UPMC), URL: www.lct.jussieu.fr (see
the personal home page of Prof. B. Silvi) Accessed July 2010.;
1997.
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Abstract: Vibrational transitions of borane and its isotopologues (11BH3, 11BD3, 10BH3, and
10BD3) have been obtained from state-specific vibrational configuration interaction calculations.
Explicitly correlated coupled-cluster calculations, CCSD(T)-F12a, with additional corrections for
high-order terms of the coupled-cluster expansion, i.e., CCSDT(Q), were used to determine
multidimensional potential energy surfaces. Additional contributions due to core-valence
interactions, scalar relativistic effects, and such arising from the diagonal Born-Oppenheimer
correction were accounted for in the one-dimensional terms within the expansion of the potential
energy surface. From these, anharmonic vibrational spectra were obtained, which are in excellent
agreement with experimental data. Mean absolute deviations from gas phase measurements
were found to be in the sub-wavenumber regime.

I. Introduction

The vibrational spectrum of borane has been the subject of many
theoretical and experimental studies.1-9 The empty p orbital
accounts for the high reactivity of borane and thus explains its
rapid dimerization to the more stable diborane. As a conse-
quence, the measurement of borane by means of spectroscopic
techniques is a tedious task, and many attempts failed until
Kaldor and Porter1 and later on Kawaguchi et al.2-4 successfully
reported the detection of the fundamental vibrational transitions.
For a discussion of the borane story, see the papers of Galbraith
et al.7 and Martin and Lee.5 From the computational point of
view, borane is a challenging system, because its low number
of electrons allows for calculations at the highest level, and thus
it has been in the focus of theoreticians for a long time.
Botschwina,6 Galbraith et al.,7 Martin and Lee,5 and Feller et
al.8 studied the harmonic spectrum of BH3 and its thermochem-
istry at different levels of electronic structure theory. From these,
Botschwina6 estimated the anharmonic transitions by scaling
and thus provided the first reliable predictions until Martin and
Lee used a quartic force field based on CCSD(T) calculations
in combination with vibrational perturbation theory for a direct
and fully ab initio calculation of the fundamentals.5 A few years
later, Schwenke9 used the quartic force field of Martin and Lee

to perform variational calculations. As a result, many spectro-
scopic constants are available for the 11BH3 and 10BH3

isotopologues, while theoretical studies focusing on anharmonic
frequencies are still missing for the deuterated species. More-
over, vibrational overtones and combination bands have not yet
been calculated, except for a very few. The motivation of this
study is two-fold: First, we intend to provide very accurate
anharmonic transitions for those isotopologues for which
experimental data are not yet available, while verifying our
computational scheme on the basis of those fundamentals, which
have accurately been determined by experiment. Second, we
would like to show that fully automated ab initio approaches
are capable of predicting vibrational frequencies with very high
accuracy.

Our approach for calculating the anharmonic transitions
of the borane isotopologues differs substantially from the
approach of Schwenke,9 although it is also based on the
variational principle. We use the Watson Hamiltonian and
thus expand the potential in terms of normal coordinates,
rather than symmetry adapted internal coordinates.

In this expression, Vri denotes single particle potentials, and pr
(i)

denotes the corresponding coefficients of the expansion. The
* To whom correspondence should be addressed. E-mail:

rauhut@theochem.uni-stuttgart.de.

V(q) ) ∑
ri
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potential is calculated in a fully automated manner, which allows
us to use any electronic structure level as implemented in the
Molpro suite of ab initio programs.10 One mode wave functions
(modals) are obtained from state-specific vibrational self-
consistent field calculations (VSCF)11-13 and a subsequent
accounting of correlation effects by means of vibration con-
figuration interaction calculations (VCI).14

II. Computational Details

A. Electronic Structure Calculations. Geometries, nor-
mal coordinates, and potential energy surfaces were obtained
from explicitly correlated coupled-cluster theory, CCSD(T)-
F12a, in combination with a triple-� basis set, i.e., vtz-f12.15

As we have shown recently, results obtained at this level
are extremely close to the basis set limit, and thus we
consider effects due to the incompleteness of the orbital basis
to be essentially negligible.16 Slater geminals with an
exponent of 1.0 a0

-1 were used throughout. For the resolution
of identity approximation (RI), a complementary auxiliary
basis set (CABS) was built from the cc-pVTZ/JKFIT basis
and the atomic orbital basis.17 An aug-cc-pVTZ/MP2FIT
basis was used within the density fitting of the integrals.18

The CABS singles correction to the Hartree-Fock energies
was included in all F12 calculations.19,20

Core-correlation effects were obtained from conventional all-
electron CCSD(T)/cc-pCVTZ energies relative to frozen-core
CCSD(T)/cc-pCVTZ results and were added to the CCSD(T)-
F12a/vtz-f12 energies. Likewise, high-order correlation effects
were determined from CCSDT(Q)/cc-pVTZ calculations in
comparison to CCSD(T)/cc-pVTZ results.21 For performing the
CCSDT(Q)/cc-pVTZ calculations, we have used Kallays’s
string-based many-body Mrcc program22,23 interfaced to the
Molpro suite of ab initio programs.10 In order to account for
diagonal Born-Oppenheimer effects, these were computed
at the CCSD/cc-pVTZ level, as described in detail by Gauss
et al.24 These calculations were performed with the Cfour
program package.25 Scalar relativistic effects were investi-
gated using the Douglas-Kroll-Hess one-electron Hamil-
tonian,26 while spin-orbit effects were not explicitly ac-
counted for as they were estimated as being too small. Note
that borane is a closed-shell molecule giving rise to second
order spin-orbit effects only and that the spin-orbit splitting
of the borane atom, i.e., at the dissociation limit of the borane
molecule, is 16 cm-1 only. As we consider only a small
fraction of the global potential energy surface near the
equilibrium structure, we believe that the corrections to the
vibrational frequencies are below 0.1 cm-1 and thus sig-
nificantly lower than for example errors in the fitting
procedure.

B. Vibrational Structure Calculations. The expansion
of the potential in terms of normal coordinates was truncated
after the three-mode contributions. Core-correlation effects,
high-order corrections to the coupled-cluster expansion, and
scalar relativistic and adiabatic effects were added to the one-
mode terms only. This essentially corresponds to a multilevel
approximation,27,28 which has successfully been used by
several groups.29,30 The potential has been generated in an
automated fashion using an iterative interpolation algo-

rithm.13 Initially, 20 grid points have been generated along
each normal coordinate. From these, single particle potentials
were determined in a subsequent step. In the Watson
Hamiltonian, vibrational angular momentum terms were
accounted for up to the first order in a multimode expansion
of the µ tensor.31 Modals were obtained from a VSCF
algorithm on the basis of a discrete variable representation
(DVR) and a distributed Gaussian basis.32,33 Vibration
correlation effects were accounted for by state-specific VCI
calculations including single to quadruple excitations.14 No
more than 10 431 configurations were considered in the
correlation space.

III. Impact of Corrections

The success of frozen-core CCSD(T) calculations is at least
partially due to an error compensation of core-valence
effects and high-order correlation terms. It is common
knowledge that explicitly accounting for just one of these
effects usually leads to an unbalanced treatment and thus to
worse results. However, this knowledge is primarily based
on single point calculations at stationary points orsin the
context of calculating accurate vibrational transitionsson
two-atomic molecules.34 With respect to extended parts of
potential energy surfaces of polyatomic molecules, knowl-
edge is rather limited.35 For that reason, we have plotted
the core-correlation and high-order corrections along the one-
dimensional elongations for all modes in Figure 1. According
to Figure 1, core-correlation effects are more important than
high-order corrections for all modes. However, for electroni-
cally more demanding systems with more valence electrons
and multiple bonds between non-hydrogen atoms, this may
change. Although core-correlation and high-order corrections
partially cancel out for some of the modes, this does not
hold true for others. For example, both core-correlation and
high-order effects correct the potential related to mode ν3 in
the same direction. As a consequence, error compensation
effects are smaller for this molecule than originally antici-
pated. It is obvious from the shape of correction potentials
that core-correlation and high-order terms are more important
for an accurate description of high-lying vibrational states
than the low-lying fundamental modes. Table 1 shows
CCSD(T)-F12a/vtz-f12 anharmonic frequencies and the
corresponding corrections due to core-correlation (CC), high-
level terms in the coupled-cluster expansion and scalar
relativistic (Rel) and adiabatic (DBOC) effects. The latter
two corrections provide almost constant shifts of 1390 and
470 cm-1 to the potential energy surface but do hardly affect
the transitions considered here; i.e., the variation in the region
around the equilibrium structure is very small.

For the deuterated species, these effects are even smaller
and, in addition, cancel each other out in most cases. As we
consider the error in the fitting of our potential energy
surfaces to be larger than these effects, we do not discuss
them any further. In contrast to that, core-correlation and
high-order effects are significantly larger and thus need to
be accounted for in order to obtain accurate results.

Martin and Lee computed the harmonic frequencies at the
CCSD(T)/cc-pVQZ level for 11BH3 and 10BH3 (see Table
2), which are in very nice agreement with our results at the
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CCSD(T)-F12a/vtz-f12 level, i.e., ω1 ) 2568.0 cm-1, ω2 )
1156.6 cm-1, ω3 ) 2701.1 cm-1, and ω4 ) 1218.3 cm-1

for 11BH3.
The largest deviation is thus 1.7 cm-1, which may either

arise from the incompleteness of the cc-pVQZ basis used
by Martin and Lee or the numerical noise caused by the
auxiliary basis sets in the explicitly correlated coupled-cluster
calculations. However, corrections due to core-correlation
and high-order terms are significantly larger (up to 5.7 cm-1)

and thus are mainly responsible for the differences between
the data sets of Martin and Lee and ours. Note that two
modes (ω1, ω3) are red-shifted by the corrections, while the
other two (ω2, ω4) are blue-shifted; i.e., there appears not to
be a general tendency.

IV. Results and Discussion
The BH bond length was determined to be re ) 1.1895 Å at
the CCSD(T)-F12a/vtz-f12 level, which is in excellent
agreement with the CCSD(T)/cc-pVQZ value of re ) 1.1899
Å obtained by Martin and Lee.5 Both values are slightly
larger than that determined from the experimental data of
Kawaguchi,3 i.e., re ) 1.185 Å. However, the latter value
was estimated from an r0 bond length, which has subse-
quently been corrected to re by an increment taken from the
CH3

+ cation.
Our computed harmonic and anharmonic frequencies are

summarized for all isotopologues in Tables 2-4. The
agreement of our computed fundamentals with the experi-
mental data of Kawaguchi et al.2-4 is excellent, with a mean
absolute deviation of just 0.9 cm-1. We believe that the
remaining errors arise mainly from the fitting procedure and
the truncation of the potential after the three-mode terms in
the vibrational structure calculations.

Although a direct comparison of our computed values for
vibrational overtones and combination bands with experi-
mental data is not possible, we expect slightly larger errors
for these modes. A comparison with the data of Kaldor and
Porter1 or Tague and Andrews36 has not been provided, as
these data are affected by matrix isolation effects, which can
be quite substantial for these light molecules.

Figure 1. Impact of core-correlation (black) and high-order
corrections (black) on the 1D potentials of BH3. The resulting
correction is shown in red; the order of the potentials is ν1

(uppermost), ν2, ν3, and ν4 (bottom).

Table 1. Impact of Core-Correlation Effects, High-Order
Coupled-Cluster Terms, Relativistic Contributions, and
Diagonal Born-Oppenheimer Corrections on the
Fundamental Modes of 11BH3 (All Quantities Are Given in
cm-1)

νi
F12,a ∆νi

CC,b ∆νi
HLT,c ∆νi

Rel,d ∆νi
DBOC,e

ν1 2494.4 5.9 -2.4 0.1 -0.7
ν2 1146.2 1.5 -0.7 0.3 -0.2
ν3 2597.0 5.9 -2.1 -0.1 -0.6
ν4 1194.9 1.9 -0.7 0.2 -0.1

a CCSD(T)-F12a/vtz-f12 anharmonic frequencies. b Correction
due to core correlation. c Correction due to high-level terms in the
coupled-cluster expansion. d Scalar relativistic corrections. e Dia-
gonal Born-Oppenheimer correction.

Table 2. Harmonic and Anharmonic Vibrational
Frequencies of 11BH3 in cm-1

MLa/Schwenkeb this work

ωi
a νi

a νi
b ωi νi exp.

ν1 2568.3 2494.9 2491.9 2562.4 2497.4
ν2 1158.0 1134.2 1148.1 1160.0 1147.1 1147.50
ν3 2700.3 2587.5 2591.5 2695.5 2600.3 2601.57
ν4 1220.0 1196.4 1199.1 1220.9 1196.3 1196.66
2ν2 2277.8 2277.1
2ν4

0 2361.5 2381.2 2383.6
ν1 + ν2 3650.3
ν1 + ν4 3685.2
ν2 + ν3 3736.3
ν2 + ν4 2354.9 2351.4

a Data taken from ref 5. b Data taken from ref 9.
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The largest difference between the data sets of Martin and
Lee,5 Schwenke,9 and ourselves is observed for ν3 of 10BH3

and 11BH3. In both cases, the values relying on the quartic
force field appear to be too low. Therefore, we assume that
this is mainly an effect arising from the approximation of
the PES. Moreover, our value for the 2ν4

0 overtone of 11BH3

is in nice agreement with the value of Schwenke but differs
considerably from Martin and Lee’s value. Therefore, we
believe that Martin and Lee’s value for the corresponding
overtone in 10BH3 is too low. Anharmonic frequencies for
the perdeuterated species are provided for the first time and
can thus not be compared. However, we consider the
anharmonic frequencies predicted for these system to be
accurate enough in order to guide experiments to come. Zero
point vibrational energies (ZPVE) have been determined for
all four isotopologues: 5715.5 cm-1 (11BH3), 5742.6 cm-1

(10BH3), 4242.9 cm-1 (11BD3), and 4277.9 cm-1 (10BD3).
Our ab initio value for the ZPVE of 11BH3 essentially is
identical with the value of Feller et al.8 (5715.6 cm-1)
obtained from a combined experimental/theoretical scaling
procedure.

We like to state once more that the calculations including
core-correlation effects and high-order terms have been
performed in a fully automated fashion, controlled by some
very few keywords in the input section only. Consequently,
this study shows that modern ab initio programs are able to
predict highly accurate vibrational spectra without extensive
fitting etc. by hand.

V. Summary and Conclusions

Vibrational frequencies of borane and its isotopologues have
been determined from multidimensional potential energy
surfaces obtained from high-level ab initio calculations. Mean
absolute deviations were found to be below one wavenumber
with respect to the most accurate gas phase measurements.
Likewise, zero point vibrational energies, which are impor-
tant for an accurate calculation of heats of formation, were
found to be in excellent agreement with previous data.
Several vibrational transitions were provided for the first
time. Moreover, core-correlation effects and high-order
contributions in the coupled-cluster treatment do not cancel
out for all types of vibrations and were thus found to be
important to be included in the calculations. Scalar relativistic
effects and diagonal Born-Oppenheimer corrections were
found to be negligible.
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Abstract: The recently developed second-order perturbation theory restricted active space
(RASPT2) method has been benchmarked versus the well-established complete active space
(CASPT2) approach. Vertical excitation energies for valence and Rydberg excited states of
different groups of organic (polyenes, acenes, heterocycles, azabenzenes, nucleobases, and
free base porphin) and inorganic (nickel atom and copper tetrachloride dianion) molecules have
been computed at the RASPT2 and multistate (MS) RASPT2 levels using different reference
spaces and compared with CASPT2, CCSD, and experimental data in order to set the accuracy
of the approach, which extends the applicability of multiconfigurational perturbation theory to
much larger and complex systems than previously. Relevant aspects in multiconfigurational
excited state quantum chemistry such as the valence-Rydberg mixing problem in organic
molecules or the double d-shell effect for first-row transition metals have also been addressed.

Introduction

The development and efficient implementation of the mul-
ticonfigurational second-order perturbation theory approach
(CASPT2) in the beginning of the 1990s by Roos and co-
workers1 represented a breakthrough for quantum chemistry
in general, but more specifically for the study of those electronic
structure cases which required a multiconfigurational description
of the reference wave function. Those problems were then first
solved quantitatively or accurately in many polyatomic systems,
such as a number of bond breakings and dissociations,2 potential
energy hypersurface (PEH) degeneracies (conical intersections),3

symmetry breaking problems (Cope rearrangement),4 biradical
situations,5,6 organic molecules photophysics,7-10 transition
metal (TM) bonding11-16 and spectroscopy,17-22 and actinide
chemistry.23-26

In particular, this method showed to be best suited to deal
with the quantum chemistry of the excited state.27 For the
first time, the overall level of accuracy in the determination
of electronic excitation energies in small- to medium-sized
molecules reached 0.1-0.3 eV for systems up to 30 atoms,
like free base porphin.28 The ability of a multiconfigurational
approach that extensively includes correlation effects like
the CASPT2 method opened the door for studying spectro-
scopic and photochemical phenomena in systems in which
computationally more costly approaches such as multiref-
erence configuration interaction (MRCI) could not be applied.
In a recent benchmark study of excitation energies in organic
molecules,29 the current version of the CASPT2 methodsin
which the IPEA zeroth-order Hamiltonian30 was usedswas
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shown to be superior to the CCSD and CC2 approaches and
equally as accurate as the linear response coupled-cluster
CC3 procedure for closed-shell ground-state systems. CASPT2
has also proven to be much better than any other method in
medium-sized molecules for excited states in cases where
the ground state is poorly defined by a closed-shell config-
uration (biradicals, conical intersections, dissociation paths)
or the excited state has a strong multiconfigurational or
diexcited character.29,31

The CASPT2 method is, however, not free of drawbacks,
all of them actually related with the limitation in the size of
the complete active space (CAS) due to the difficulties in
handling large high-order density matrices. Some of the
weaknesses of the CASPT2 method which were partially
solved were (i) the intruder state problem perturbing the first-
order interacting reference spaceswhich required the intro-
duction of a level-shift correction (LS-CASPT2);32,33 (ii) the
overestimation of high-multiplicity statesssolved by the
IPEA zeroth-order Hamiltonian;30 (iii) the lack of orthogo-
nality of the individual single-state CASPT2 solutions,
causing improper mixing of valence and Rydberg wave
functions7 or unphysical state crossings34swhich was solved
by developing the multistate (MS) CASPT2 approach.35

These weaknesses generally affected the size and accuracy
of the problems under study because the maximum active
space size of 13-15 molecular orbitals (MOs) was rapidly
reached, especially if a large number of Rydberg orbitals
has to be considered. Specific problems like, for instance,
the need to include in the CAS a second d-shell (4d) for
first-row transition metal atoms were also soon recognized.36

As mentioned, all of these problems have one straight-
forward solution: increasing the active space size. Recent
methodological developments in ab initio quantum chemistry
like the Cholesky decomposition (CD) approach, also
implemented for the CASPT2 method,37,38 have reduced the
effort involved in handling two-electron integrals and have
extended the applicability of ab initio methods to much larger
molecular systems. For instance, a 1000 basis set CD-
CASPT2 calculation is easily affordable nowadays within
the MOLCAS package.38-41 Truncation of the virtual space
in CD-CASPT2 calculations is also possible.42 This method
is based on a modified version of the frozen natural orbital
(FNO) approach used in coupled cluster theory. However,
increasing the molecular size or truncating the virtual space
are not always sufficient techniques. There are many
quantum-chemical problems whose accurate solution is out
of reach for CASPT2 because the adequate number of MOs
cannot be included in the active space, like organometallic
systems with more than one transition metal atom, extended
π-space molecules with more than 14 π MOs, problems in
which the inclusion of additional σ MOs is needed, or
chemical reactions in which the requirements for a balanced
space exceeds the capability of the CAS approach.

The recent implementation of the second-order perturba-
tion theory restricted active space (RASPT2) method leads
the field in the proper direction.43 In the CAS framework,44

the MO space is divided into three subspaces with a varying
number of electrons: inactive (always doubly occupied),
active (with varying occupation from zero to two), and

secondary (always empty). All possible excitation levels
compatible with spatial and spin symmetry involving the
electrons in the active space form the multiconfigurational
CAS-CI space used as a reference for a further perturbative
CASPT2 treatment.1,2 The configurational space rapidly
grows to many millions of determinants with the size of the
active space, making the treatment unaffordable. The RAS
method45,46 further divides the active space into three
subspaces: RAS1, RAS2, and RAS3. The final multireference
space is built by allowing in RAS2 the same type of full-CI
expansion as previously in CAS, but restricting in RAS1 and
RAS3 the excitation level to a predefined range: up to single
(S), double (SD), triple (SDT), quadruple (SDTQ), etc., by
limiting the number of allowed holes (RAS1) and particles
(RAS3). Avoiding high excitation levels in RAS1 and RAS3
leads to less extended multiconfigurational spaces, therefore
allowing a much larger number of active orbitals as compared
with the CAS expansions. However, the number of possible
divisions of the active space combined with the different
allowed levels of excitation increases the choices of con-
figurational expansions and the number of solutions, thus
making the RASSCF/RASPT2 method less systematic than
the CASSCF/CASPT2 method.

The selection of RAS spaces requires very careful calibra-
tion. Finding reliable strategies for general purpose calcula-
tions is highly required. Up to now, the RASPT2 method
has been tested in the determination of the singlet-triplet
state energy splitting of three copper-dioxygen and two
copper-oxo complexes43,47 and one-electron ionization
potential and optical band gaps of ethylene, acetylene, and
phenylene oligomers.48 It has been shown how RASPT2
offers a similar accuracy when compared to CASPT2 at
significantly reduced computational expense, whereas more
demanding calculations out of reach for CASPT2 can be
performed with the new formulation.

In the present contribution, we focus on electronic excita-
tion energies, a field in which RASPT2 probably will play
a major role in the coming years. We have selected different
sets of molecules in order to check the accuracy of the
method and the computational strategies in systems and
problems of various classes, including valence and Rydberg,
singlet and triplet, and ligand-field and charge-transfer excited
states in different organic and inorganic systems. Figure 1
compiles the benchmark set of molecules considered in the
present study.

The paper is divided into four sections, each of which
focuses on one aspect of the calibration. Initially, free base
porphin will be used as an example of the use of RASPT2
in a system with an extended π system whose inclusion in
the active space is out of reach for CASPT2. Then, excitation
energies of singlet and triplet valence and Rydberg states of
ethene and benzene will be computed in order to test the
accuracy and ability of RASPT2 to deal with the simulta-
neous calculation of valence and Rydberg states, and how it
takes care of the valence-Rydberg problem. Next, the
valence states of naphthalene and a set of organic five- and
six-membered heterocyclic molecules and DNA/RNA nu-
cleobases will be computed with RASPT2 to determine the
accuracy of the results with different partitions of the RAS
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space. Finally, the nickel atom and the copper tetrachloride
dianion will be computed in order to establish the accuracy
and proper strategies required in RASPT2 to handle the
required inclusion of a second correlating d shell for first-
row transition metal compounds, and how the new method
simplifies the calculations and extends their possibilities.

2. Computational Details

All CASSCF/CASPT2 and RASSCF/RASPT2 calculations
were performed with the MOLCAS-7 program.39 All-
electron, one-electron basis sets were used throughout. For
ethene and benzene (and except when indicated), the
calculations were performed with an ANO-L basis set49

contracted to [4s3p1d] for carbon and [2s1p] for hydrogen
atoms. In addition, 1s-type, 1p-type, and 1d-type contracted
functions, with diffuse coefficients described elsewhere,35

were added to this basis set and placed in the center of the
molecule to describe Rydberg orbitals. For free base porphin,
an ANO-S C,N[3s2p1d]/H[2s] basis set was used. For all
other organic systems, a triple-� valence polarized basis
(TZVP) set was employed.50 Cholesky decomposition of the
two-electron integrals was accomplished with a threshold of
10-5 au.51 Reduced-scaling evaluation of the Fock exchange
matrices in the CASSCF and RASSCF calculations was
accomplished by means of the Local-K screening approach52

employing localized Cholesky orbitals.53 For the calculations
on transition metal systems, ANO-RCC basis sets54 were
used, contracted to [7s6p4d3f2g] for nickel, [7s6p4d3f2g1h]
for copper, and [5s4p2d1f] for chlorine atoms. Scalar
relativistic effects were included using a Douglas-Kroll-Hess
Hamiltonian.55,56 In ethene and benzene, except when
mentioned, the ground state geometries were taken from gas-
phase experimental determinations, as described in the
Supporting Information (SI). CuCl4

2- is square-planar (D4h),
and the Cu-Cl distance, 2.291 Å, was taken from our
previous study.57 The other systems were optimized with

density functional theory (DFT) and the B3LYP functional58

using the Turbomole 5.10 package and employing the triple-�
valence polarized basis sets available in Turbomole.59 At
the optimized geometries, subsequent single point MS-
CASSCF/CASPT2 and MS-RASSCF/RASPT2 calculations
were performed using the mentioned basis sets. When high
symmetry is required, for instance, D6h in benzene, D4h for
CuCl4

2-, or spherical symmetry in the nickel atom, the
calculations were performed in a lower-symmetry point
group, and MOLCAS tools were used to obtain the proper
orbital symmetry. An imaginary level shift32 of 0.1 au was
used to prevent weakly coupling intruder states’ interference,
and the default shift for the IPEA zeroth-order Hamiltonian30

(0.25 au) was employed. The value of 0.25 au is now the
default in CASPT2, and we have used it in all cases, except
for the free base porphin calculations where we have set the
shift equal to zero. The reason for this different choice is
that we wanted to compare the present results to those
obtained prior to the introduction of the IPEA shift in
2004.28,60 However this study does not focus on IPEA shift
effects, and we do not compare results with different IPEA
shifts for each system because this deviates from the purpose
of the present study. In all calculations, the core electrons
are kept frozen in the perturbative calculations, except for
the nickel atom where the 3s and 3p electrons are included.

It is important to describe the notation employed to label
CAS and RAS calculations. In the first case, the traditional
label is used, that is, CAS(n,i), where n is the number of
electrons included in the active space and i is the number of
active orbitals. For RAS calculations, a longer notation is
used, RAS(n,l,m;i,j,k), where n is the number of active
electrons, l the maximum number of holes allowed in RAS1,
and m the maximum number of electrons to enter in RAS3.
Active orbitals are labeled by i,j,k and refer to those placed
in RAS1, RAS2, and RAS3, respectively. Sometimes, we
will also use S, SD, SDT, or SDTQ to emphasize the
maximum RAS1fRAS3 excitation level. The RAS2 sub-
space has the same meaning in RASSCF as the CAS active
space in a CASSCF calculation; i.e., all possible spin- and
spatial symmetry-adapted configuration state functions (CSFs)
that can be constructed from the orbitals in RAS2 are
included in the multiconfigurational wave function. The
RAS1 and RAS3 subspaces, on the other hand, permit the
generation of additional CSFs subject to the restriction that
a limited number of excitations may occur from RAS1, which
otherwise contains only doubly occupied orbitals, and a
limited number of excitations may occur in RAS3, which
otherwise contains only empty orbitals. The active space
employed for the various systems will be described in each
section. Further details are reported in the SI .

3. Results and discussion

3.A. Free Base Porphin. Free base porphin (FBP) is an
example of an extended π-conjugated system having 26
valence ππ* electrons and 24 ππ* MOs (26/24). Including
a full ππ* active space is out of reach for a conventional
CASPT2 calculation. Previous studies were performed at the
CASPT2(4/4) and CASPT2(16/14) levels.28,60 In the former

Figure 1. Benchmark set of molecules considered in this
study.

RASPT2 Method for Electronic Excited States J. Chem. Theory Comput., Vol. 7, No. 1, 2011 155



case, only four singlet states were computed, whereas eight
singlet and eight triplet states were obtained at the latter level
of theory. An overall agreement of 0.2-0.3 eV with respect
to experimental values was obtained for all eight singlet states
belonging to the porphin Q, B, N, and L bands, although in
all these cases, CASPT2 yields too low values. FBP will be
employed as a typical example of how to properly select
the RAS active spaces and establish a RAS1/RAS3 excitation
level yielding balanced and accurate excitation energies.

Table 1 displays a comparison between our new RASPT2
calculations and the previous CASPT2 calculations. The
former includes all ππ* valence electrons and MOs (26/24)
in the RAS active space. As in many other organic molecules,
the two highest-lying occupied MOs (HOMO and HO-
MO-1) and the two lowest-lying MOs (LUMO and LU-
MO+1) are the four most relevant MOs to describe the four
lowest-lying states of the molecule.27 This active space
(named Gouterman’s space in FBP) was previously used for
CASPT2 calculations and showed to be necessary to describe
the nature of such states. Indeed, CASPT2(4/4) calculations
(see Table 1) provided reasonably accurate values for the
mentioned states, as well as CASPT2(16/14), including
Gouterman’s MOs plus other additional orbitals which
allowed calculation of higher roots.

How should we find out how to partition the RAS spaces in
order to include FBP full ππ* space and obtain accurate results?
Not all partitions are equally adequate, and especially the choice
of RAS2 has to be made carefully. Table 2 summarizes the
natural orbital occupation numbers for a number of relevant
MOs obtained in a RASSCF(26,2,2;11,4,9)(SD) calculation.
This level of theory, including the four Gouterman’s MOs in
RAS2, the remaining ππ* occupied and unoccupied MOs in
RAS1 and RAS3, respectively, and up to double excitations
(SD) for the latter spaces, is not intended to get accurate results
for all nine computed states but just to guide us in designing
the RAS partition. For each excited state, we have selected (see
last column in Table 2) the most relevant MOs, namely, those
in which the occupation number is below 1.9 or above 0.1.
Obviously such a number may vary at the different RASSCF
levels, but just slightly. It is shown, for instance, that for the
four lowest-lying states just the four Gouterman’s MOs fulfill
such requirements, as expected, whereas two more occupied
MOs are required for the 31B2u and 31B3u states and two and
three more for the 41B2u and 41B3u states, respectively.

Why is this analysis so important? In order to have a
balanced and accurate energy difference between states, the
MOs strongly differing in occupation number for such states
must be placed in RAS2 simultaneously. That is, to get

Table 1. Excitation Energies (eV) of the Singlet and Triplet Valence ππ* States of Free Base Porphin (D2h)

state
CASPT2

(4/4)a
CASPT2
(16/14)b

RASPT2
(26,2,2;11,4,9) (SD)c

RASPT2
(26,3,3;11,4,9) (SDT)c

RASPT2
(26,2,2;i,j,k) (SD)d

STEOM-
CCSDe exptlf

11B3u 1.70 1.63 2.18 1.91 2.18 1.75 1.98 - 2.02 (Qx)
11B2u 2.26 2.11 2.38 2.16 2.38 2.40 2.33 - 2.42 (Qy)
21B2u 2.91 3.08 3.23 2.86 3.23 3.62 3.13 - 3.33 (B)
21B3u 3.04 3.12 3.21 3.16 3.21 3.47 3.13 - 3.33 (B)
31B2u 3.42 5.22 (3.30)g 3.37 3.80 4.35 3.65 (N)
31B3u 3.53 5.38 (3.21)g 3.28 3.48 4.06 3.65 (N)
41B2u 3.96 5.95 (4.02)g 4.10 4.20 5.00 4.25 (L)
41B3u 4.04 6.04 (4.14)g 4.22 4.23 5.17 4.25 (L)
13B2u 1.52 1.83 1.70 1.83 1.26 1.58
13B3u 1.85 1.99 1.77 1.99 1.80
23B3u 1.88 1.98 1.88 1.98 1.98
23B2u 1.98 1.98 1.90 1.98 1.85
CSFh 8 537705 63258 (1877432)g 1877565 279974/676297

a CASPT2(4,4)/ANO-L 3s2p/2s, ref 60. Gouterman’s four-electron/four-MO CAS space. b CASPT2(16,14)/ANO-S 3s2p1d/2s, ref 28.
c Present RASPT2 results. Full ππ* 26-electron/24-MO RAS employed. Gouterman’s 4/4 space placed in RAS2. SD or SDT for all states
except when indicated. The poor results for the highest singlet states explained in the text. d Different RAS spaces partition following the
occupation number criterion of Table 2. See text. e STEOM-CCSD/SVZP results from ref 61. f See data in ref 28. g Present RASPT2 results.
Full ππ* 26-electron/24 MO-RAS employed. Gouterman’s 4/4 space placed in RAS2. Within parentheses are results using SD for the
ground 11Ag state and SDT for the excited state and CSFs for the excited-state 1B2u SDT calculations. h Number of configuration state
functions (CSF) for the 1Ag symmetry. In the sixth column are CSFs for active spaces (26,2,2;8,6,9)(SD)/(26,2,2;6,8,9)(SD) as examples.

Table 2. Natural Occupation Numbers of the Most Relevant Molecular Orbitals of the Low-Lying ππ* States of Free Base
Porphin (D2h)a

state 3b1u 4b1u 2b2g 3b2g 3b3g 5b1u
b 2au

b 4b2g
b 4b3g

b 3au RAS2c b1ub2 gb3 gau/e-

11Ag 1.9692 1.9596 1.9714 1.9561 1.9581 1.8539 1.8631 0.1481 0.1595 0.0543
11B3u 1.9699 1.9606 1.9349 1.9715 1.9646 1.4726 1.4449 0.5448 0.5664 0.0739 1111/4
11B2u 1.9696 1.9622 1.9702 1.9601 1.9625 1.5462 1.3962 0.6117 0.4803 0.0626 1111/4
21B2u 1.9609 1.9684 1.9662 1.9582 1.9638 1.3169 1.4744 0.5389 0.6988 0.0615 1111/4
21B3u 1.9713 1.9527 1.9526 1.9722 1.9451 1.3941 1.4197 0.6275 0.6037 0.0602 1111/4
31B2u 1.9906 1.2519 1.9907 1.9637 1.7919 1.7860 1.7749 0.2467 1.0048 0.0992 2121/8
31B3u 1.9922 1.3057 1.9617 1.9923 1.7339 1.8496 1.6622 1.1639 0.1479 0.0773 2121/8
41B2u 1.2515 1.9914 1.7929 1.9747 1.9898 1.8367 1.7494 0.1429 1.0928 0.0765 3311/10
41B3u 1.3231 1.9910 1.9694 1.7753 1.9894 1.8312 1.6278 0.9479 0.2936 0.1310 3312/10

a RASSCF(26,2,2;11,4,9)(SD) level of calculation. b Orbitals of the 4/4 Gouterman’s space. c Orbitals and electrons within RAS2 selected
from the occupation numbers (<1.9 and >0.1).
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balanced RASPT2 excitation energies from the ground to
the 11B2u, 21B2u, 11B3u, and 21B3u excited states, at least the
four Gouterman’s MOs (b1ub2gb3gau/ne;1111/4) must be
placed in RAS2. Otherwise the description of the various
states will be strongly unbalanced at the initial RASSCF
level, and RASPT2 may not be able to recover the desired
accuracy. This is better seen in the case of the higher-lying
states. In Table 1, we report excitation energies at the
RASPT2(26,2,2;11,4,9)(SD) level of calculation. Only the
four Gouterman’s MOs are included in RAS2, and single
and double excitations (SD) are allowed from RAS1 to RAS3
to obtain the RAS-CI expansion. This level is clearly
adequate for describing the four lowest-lying states, largely
reducing the computational cost with respect to CASPT2(16/
14) (only 10% of CSFs required for the RAS calculations).
The case is quite different for the four next states, which
require additional MOs to be properly described (see Table
2).

The RASPT2 excitation energies deviate toward high
values by more than 1.5 eV, showing the underestimation
of the correlation energy for the excited states as compared
with the ground state. In parentheses, we included the results
of increasing the CI excitation level only for the excited states
to SDT, while keeping SD for the ground state, a strategy
that partially restores the lost balance, giving excitation
energies within 0.2-0.3 eV from the experimental values.
Similar results are obtained if we increase the level of
excitation in RAS1/RAS3 to triple excitations for all states
with the RASPT2 (26,3,3;11,4,9)(SDT) calculations, proving
that the ground state treatment does not improve with respect
to the SD level. In any case, the computational cost increases
enormously by including the triple excitations (30 times more
CSFs are required).

We also performed more elaborate calculations in which
each pair of states (here, the ground and each excited state)
has been computed using the specific active space suggested
by the occupation numbers in Table 2. In this procedure,
both the ground and excited states have in RAS2 those MOs
largely changing their occupation number in the excitation
process. These calculations (which are equivalent to the
RASPT2(26,2,2;11,4,9)(SD) results for the four lowest-lying
states) provide the most accurate set of results for the
different states at an intermediate computational cost.

The main conclusion obtained from these sets of calcula-
tions on FPB is that RASPT2 can provide accurate results
for excited states only if the design of the RAS partition,
and particularly the composition of the RAS2 space, is
carefully controlled. RAS2 must contain those MOs that
largely change their occupation number in the states under
comparison. Otherwise, the corresponding states will have
an unbalanced CI description, and perturbation theory might
be unable to provide accurate excitation energies. Any initial
RASSCF SD calculation on the requested states including a
large enough active space will be sufficient to identify the
MOs that should be placed in RAS2, and the occupation
number criterion (<1.9 and >0.1) can be used for guidance.
If the RAS2 partition is correct, the singles and doubles (SD)
level of CI excitation required in RAS1 and RAS3 is
sufficient to provide accurate excitation energies at a reason-

able computational cost. Increasing the excitation level (triple
or quadruple CIs) may partially compensate for the lack of
balance, but it typically gives large CI expansions that may
become very expensive. The use of the full ππ* 26/24 active
space increases the accuracy compared to more limited active
spaces. Furthermore, RASPT2 compares well with experi-
mental results, unlike CCSD, especially for the higher states,
which deviate from experimental results by almost 0.8 eV
at the CCSD level of calculation. RASSCF/RASPT2 can
therefore be considered a very convenient tool for studying
the spectrum of this type of π-extended system. This is even
more important when carrying out geometry optimizations.
Occasionally, the selective partition of a large π space like
that of porphin leads to localized solutions at the CASSCF
level, which can be avoided at the RASSCF level, as shown
recently in psoralen.62

3.B. Ethene and the Valence-Rydberg Mixing
Problem. Ethene is usually described by two ππ* valence
orbitalssthe HOMO (highest occupied molecular orbital) and
LUMO (lowest unoccupied molecular orbital)sthat form the
basis for the low-lying valence singlet and triplet ππ* states.
Additionally, series of diffuse states of increasing energies
converging to the ionization potentials (IPs) of the molecule,
named the Rydberg states, will also appear at low energies
in the gas-phase absorption spectrum. To represent such
states, we have employed, as previously done,35,63 a specific
atomic-type one-electron basis set of diffuse character placed
on the molecular centroid. The lowest Rydberg series will
be represented by excitations (basically single excitations)
from the HOMO orbital to each of the orbitals of the n ) 3
series, 3s3p3d, where n has a value one unit more than the
valence main quantum number. As the required valence ππ*
active space is small, previous studies at the CASPT2
level35,63 employed an active space of two electrons in 11
orbitals, including the two valence ππ* plus the nine 3s3p3d
Rydberg orbitals. As was soon detected in polyenes,63 the
CASSCF procedure is unable to deal properly with the si-
multaneous calculation of valence and Rydberg states.
The lack of correlation leads to wave functions in which the
MOs are strongly mixedsthe so-called valence-Rydberg
mixingsyielding too diffuse valence states and too compact
Rydberg orbitals that only the multistate CASPT2 is able to
correct. Compared with these previous calculations, the
RASPT2 results in Table 3 can help us to answer several
questions. First, is there any simple partition of the active
space that avoids the costly inclusion of the Rydberg orbitals
within the CAS space? Second, what is the origin of the
valence-Rydberg mixing, and how does RASPT2 handle
this problem? Finally, is the multistate treatment still needed,
and is there any affordable additional solution?

As observed in Table 3, and in previous studies,63 for the
lowest-energy 1B1u states, the perturbative CASPT2(2,11)
correction produces values off by almost 0.5 eV compared
to experimental results. The analysis of the orbital extension
〈r2〉 (see that elsewhere)35 indicates that even when for the
lowest-energy state it should reflect its valence and compact
character, yielding a similar value to that for the ground state
(11Ag), the magnitude for the orbital extension is almost 4
times larger for both excited states, an illustration of the
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mixed character of the obtained wave function. It was already
proven35 that the use of the MS-CASPT2 level of calculation
is required to get a correct result for the interacting 1B1u states
and solve the so-called valence-Rydberg mixing problem.
After the orthogonalization produced by the MS treatment,
the valence and Rydberg states are clearly separated, and
the corresponding orbital extensionscomputed by using the
perturbatively-modified CAS-CI (PMCAS-CI) wave function
obtained from the MS methodsdecreases close to the ground
state value for the valence 11B1u state, whereas it largely
increases for the Rydberg 21B1u states.

In the RASPT2 calculations, we have followed two types
of computational strategies. First, we have placed the nine
Rydberg MOs into the RAS3 active space, leaving the RAS1
space empty and the two ππ* valence MOs and electrons in
RAS2. We have allowed only combined single excitations
toward RAS3, since the Rydberg states are typically well
described just by single one-electron promotions, as previ-
ously suggested.64 The active space employed can be labeled
as RASPT2(2,0,1;0,2,9)(S), including two active electrons and
11 MOs. Table 3 shows that at such a level of calculation, that
is, by moving the Rydberg MOs to RAS3, there is no loss of
accuracy compared to CASPT2(2,11)/MS-CASPT2(2,11). In
this small system, the computational effort is only marginally
decreased, but the gain will be much more important in larger
molecules. Furthermore, two more advantages can be high-
lighted: additional valence MOs can eventually be added to
RAS2 if required for larger systems, and a single partition of
the active space is made available, simplifying considerably the
calculations. On the other hand, the behavior of CASPT2(2,11)
and RASPT2(2,0,1;0,2,9)(S) with respect to the valence-Rydberg
mixing problem is basically the same, as could be expected by
the fact that the same types of correlation effects (ππ* and
Rydberg in both cases) are included in the wave function. Still,
the MS treatment at the MS-RASPT2 level is required to get
correct energies and MO extensions.

RASPT2 allows for enlarging the active space with
additional MOs, for instance, the σ valence space (5σ, 5σ*),
and these were incorporated into RAS1 and RAS3 spaces
in the calculations labeled RASPT2(12,3,3;5,2,1)(SDT) in
Table 3. New states, such as σπ*, πσ*, σσ*, or σRydberg*
can now be described by this method, but not only that. At
the RASPT2(12,3,3;5,2,16)(SDT) level, the valence-Rydberg
mixing is already solved, and the multistate treatment is not
required. As observed, two additional σ* MOs were finally
added to the RAS3 space in order to avoid large intruder

state problems. Apart from that, the inclusion of the
remaining valence electron and orbitals in the active space
was sufficient to provide an improved wave function and
final results within 0.05 eV from experimental results. This
type of behavior has been observed before when active
spaces were enlarged to include correlation effects between
MOs of different angular moments.34 Notice that neither the
Rydberg nor the σσ* MOs are included in RAS2.

Therefore, in order to incorporate simultaneously the effects
of these MOs, a SD excitation level was insufficient (leading
to deviations larger than 2 eV) because of the lack of balance
between the ground and excited states, as shown in the previous
section for FBP. We used one strategy which worked for FBP
to balance the treatment; namely, we increased the level of
excitation to SDT. Another option would have been to put all
the MOs in RAS2, but this would have been unaffordable in
this case. We can conclude that RASPT2 provides two different
solutions to the valence-Rydberg mixing problem, either
reaching the MS level of calculation or introducing new MOs
into the RAS spaces, if possible.

Table 4 presents a comparison between the CASSCF/
CASPT2/MS-CASPT2(2,11) and RASSCF/RASPT2/MS-
RASPT2(2,0,1;0,2,9)(S) levels of calculation for the low-
lying singlet and triplet valence and Rydberg states in ethene.
As in the previous cases, moving the Rydberg orbitals from
RAS2 to RAS3, including up to single excitations from
RAS1 to RAS3, provides the same type of accuracy as the
full inclusion of the Rydberg MOs into RAS2. This recipe
is reliable and a much less costly alternative for the
simultaneous calculation of valence and Rydberg states,
especially useful for larger systems.

3.C. Acenes: Benzene and Naphthalene. In Tables 5,
6, and 7, we report excitation energies for benzene and
naphthalene at different levels of theory. In Table 5, valence
and Rydberg (n ) 3 series) singlet excited states of ππ*,
πσ*, and σσ* character calculated with the CASSCF/
CASPT2, RASSCF/RASPT2, MS-CASPT2/MS-RASPT2,
and CCSD methods are presented. Two RASPT2 strategies
have been followed. In the first set of calculations, the six
ππ* valence MOs were left in RAS2, and the nine Rydberg
orbitals were placed in RAS3, allowing up to single
excitations. As in the case of ethene, no loss of accuracy is
observed with respect to CASPT2 when using this procedure,
which largely reduces the computational effort. For instance,
the active spaces CAS(6,15) and RAS(6,0,1;0,6,9) generate
2345 and 211 CSFs of 1Ag symmetry, respectively (see also

Table 3. Excitation Energies (eV) of Selected States of Ethene (D2h)a

S SDT

state
CASPT2
(2,11)b

MS-CASPT2
(2,11)b

RASPT2c

(2,0,1;0,2,9)
MS-RASPT2c

(2,0,1;0,2,9)
RASPT2d

(12,3,3;5,2,16)
MS-RASPT2d

(12,3,3;5,2,16) exptle

11B1u(ππ*) 8.43 8.04 8.44 8.13 8.06 8.00 8.0f

21B1u(3dπ) 8.98 9.38 9.03 9.35 9.35 9.41 9.33

a Comparison of CASPT2, MS-CASPT2, RASPT2, and MS-RASPT2 results with ππ* plus Rydberg and ππ* and σσ* plus Rydberg active
spaces. b CASPT2 and MS-CASPT2, from a state average of two 1B1u roots and a two-electron-11-orbital including the two ππ* MOs and
nine (n ) 3) Rydberg MOs. c RASPT2 and MS-RASPT2, from a state average of two 1B1u roots and a two-electron-11-orbital including the
two ππ* MOs (in RAS2) and nine (n ) 3) Rydberg MOs (in RAS3). Only one particle is allowed (S excitations) in RAS3. d RASPT2 and
MS-RASPT2, from a state average of three 1B1u roots and a 12-electron-16-orbital including the two ππ* (in RAS2) MOs, five σσ* MOs
(RAS1 and RAS3), and nine (n ) 3) Rydberg MOs (in RAS3). e Experimental data. See ref 7. f Estimated vertical excitation energy from
earlier theoretical work. See therein, ref 63.
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SI). In benzene, because of its high symmetry, the spurious
mixing of valence and Rydberg wave functions is not such
a problem as it is in ethene, and therefore there is no
significant difference when introducing the MS correction,
except for symmetries with close-lying valence and Rydberg
states like 1E1u, where the changes in energies reach up to

0.18 eV. In the second set of calculations, also reported in
Table 5, six additional σσ* electrons and MOs have been
included, three in RAS1 and three in RAS3, and up to triple
excitations have been allowed. These calculations, RASPT2/
MS-RASPT2(12,3,3;3,6,12)(SDT), are much more expensive
than the previous ones, RASPT2/MS-RASPT2(6,0,1;0,6,9)(S)

Table 4. Excitation Energies (eV) of the Singlet and Triplet Valence ππ* and n ) 3 Rydberg States of Ethene

CAS(2,11)a RAS(2,0,1;0,2,9)(S)b

state CASSCF CASPT2 MS-CASPT2 RASSCF RASPT2 MS-RASPT2 exptlc

11Ag

11B3u (3s) 6.57 7.26 7.26 6.45 7.23 7.23 7.11
11B1g (3pσ) 7.17 7.91 7.91 7.05 7.88 7.88 7.80
11B2g (3pσ) 7.18 7.91 7.91 7.06 7.89 7.89 7.90
11B1u (V) 7.93 8.43 8.04 7.83 8.44 8.13 8.0d

21Ag (3pπ) 7.83 8.31 8.31 7.72 8.26 8.27 8.28
21B3u (3dσ) 8.01 8.81 8.81 7.88 8.78 8.78 8.62
31B3u (3dδ) 8.11 8.93 8.93 7.98 8.90 8.90 8.90
11B2u (3dδ) 8.11 8.96 8.96 7.98 8.94 8.94 9.05
11Au (3dπ) 8.10 8.93 8.93 7.97 8.91 8.91
21B1u (3dπ) 9.38 8.98 9.38 9.37 9.03 9.35 9.33
13B1u (V) 4.30 4.44 4.44 4.18 4.41 4.42 4.36
13B3u (3s) 6.49 7.17 7.17 6.36 7.15 7.15 6.98
13B1g (3pσ) 7.14 7.87 7.87 7.02 7.86 7.86 7.79
13B2g (3pσ) 7.15 7.88 7.88 7.02 7.85 7.85
23Ag (3pπ) 7.31 8.17 8.17 7.19 8.11 8.11 8.15
23B3u (3dσ) 7.99 8.79 8.80 7.86 8.77 8.78 8.57
33B3u (3dδ) 8.05 8.88 8.89 7.92 8.86 8.86
13B2u (3dδ) 8.08 8.94 8.94 7.95 8.92 8.92
13Au (3dπ) 8.10 8.94 8.94 7.97 8.92 8.92
23B1u (3dπ) 8.41 9.09 9.10 8.28 9.04 9.04

a CASSCF, CASPT2, and MS-CASPT2 results, two electrons and 11 MOs including the two ππ* MOs and nine (n ) 3) Rydberg MOs.
b RASSCF, RASPT2, and MS-RASPT2 results, two electrons and 11 orbitals including the two ππ* MOs (in RAS2) and nine (n ) 3)
Rydberg MOs (in RAS3). Only one particle is allowed (S excitations) in RAS3. c See ref 7. d Estimated vertical excitation energy from earlier
theoretical work. See therein, ref 63.

Table 5. Excitation Energies (eV) for the Low-Lying Valence and Rydberg Singlet States of Benzenea

S SDT

state CASPT2b MS-CASPT2b
RASPT2c

(6,0,1;0,6,9)
MS-RASPT2c,d

(6,0,1;0,6,9)
RASPT2e

(12,3,3;3,6,12)
MS-RASPT2d,e

(12,3,3;3,6,12) CCSDf exptlg

V-ππ*
11B2u 4.94 4.94 4.98 4.98 4.72 4.93 5.19 4.90
11B1u 6.22 6.21 6.20 6.20 5.83 6.44 6.59 6.20
11E1u 7.12 6.92 7.00 6.82 6.72 6.93 7.17 6.94
21E2g 8.05 8.05 8.09 8.10 7.93 7.94 9.18 7.8

R-ππ*
21E1u (3pπ) 7.22 7.29 7.28 7.30 7.16 7.39 7.58 7.41
21A1g (3dπ) 7.88 7.87 7.94 7.93 7.85 7.87 7.86 7.81
11E2g (3dπ) 7.91 7.88 7.95 7.96 7.88 7.85 7.85 7.81
11A2g (3pπ) 7.89 7.91 7.93 7.92 7.82 7.84 7.88

R-πσ*
11E1g (3s) 6.54 6.54 6.54 6.54 6.50 6.50 6.55 6.33
11A2u (3pσ) 7.12 7.12 7.08 7.08 7.10 7.06 6.99 6.93
11E2u (3pσ) 7.22 7.22 7.24 7.24 7.18 7.11 7.06 6.95
11A1u (3pσ) 7.15 7.15 7.16 7.16 7.11 7.18 7.14
11B2g (3dσ) 7.75 7.79 7.75 7.75 7.67 7.69 7.66
11B1g (3dσ) 7.76 7.79 7.75 7.75 7.68 7.66 7.66
21E1g (3dδ) 7.73 7.72 7.73 7.71 7.69 7.69 7.64 7.54
31E1g (3dδ) 7.77 7.76 7.77 7.79 7.71 7.74 7.70

R-σσ*
31E2g (σ3s) 9.08 9.38 9.39

a For degenerated D6h states, two similar values are obtained in D2h in the CASPT2 and RASPT2 steps, unlike in CASSCF or RASSCF,
where external constraints avoid the orbital mixing and symmetry breaking. In all cases, the highest-energy solution has been selected.
b The CAS space differs for each symmetry (see SI). It includes the six valence ππ* orbitals and those Rydberg orbitals required to obtain
the Rydberg states. All energies referred to ground states with the equivalent CAS. c RAS1 empty, RAS2 ππ* valence MOs, and RAS3
including nine (n ) 3) Rydberg MOs. A single particle (S) allowed in RAS3. d A single-root calculation for the 11Ag ground state was used in
the MS results. e Six additional σσ electrons and MOs added to RAS1 and RAS3, up to three holes/particles allowed in RAS1/RAS3.
f Linear response-CCSD calculations.65 g See revision of data in ref 65.
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(e.g., 927 588 CFSs for 1Ag states), and a similar accuracy
is obtained. They slightly improve the results in conflictive
states like the 21E2g valence state, predicted at 7.94 eV at
this level, for which the experimental value65 is 7.8 eV. This
highly multiconfigurational state is poorly described by
CCSD, which yields 9.18 eV, a value 1.4 eV off with respect
to experimental results.65

The inclusion of the σσ* MOs and electrons also allows
the computation of new states. As an illustration, we have
computed the 31E2g (σ3s) Rydberg state, a single-reference
state, for which RASPT2 and CCSD predict a similar
excitation energy.65 Triple excitations have been included
in selected cases in order to compute additional σσ* states.
As in the ethene and FBP cases, this is one possible strategy
to compensate for the loss of balance caused by not including
in RAS2 the σσ* MOs relevant for the simultaneous
description of the ground and excited states.

Alternatively, those MOs could be added to RAS2 for both
states, and then just up to double excitations would be
required.

In Table 6, we compare MS-RASPT2(6,m,m;3,0,3), with
m ) 2 (SD), 3 (SDT), or 4 (SDTQ), to MS-CASPT2(6,6).

Additionally, one set of calculations using SD for the
ground and SDT for the excited states has been included.
Only the valence ππ* states are considered. In RASPT2,
the RAS2 space was left empty. Inclusion of only up to
double excitations leads to errors of about 0.5 eV toward
high energies, both in singlet and triplet states. As already
shown in FBP, this deviation is due to the lack of balance
between the ground and excited states, because the relevant
MOs required describing the excited states are excluded from
RAS2. To partially correct for this unbalance, we have used
the strategies already shown for FBP: either combining SD
for the ground state and SDT for the excited states or using
SDT or SDTQ for all states. This is a useful comparison
between various RASPT2 partitions and the equivalent
CASPT2 treatment. In order to reproduce the experimental
values, the simultaneous inclusion of Rydberg basis func-

tions, MOs, and states would be required, even to treat
valence states only. In conclusion, the strategy of leaving
RAS2 empty does not provide extremely accurate results
unless a high RAS1/RAS3 excitation level is employed, and
it is especially inadequate if only SD is used for all states.
Depending on the individual case, it might be preferable
either to include in RAS2 the relevant orbitals (see the FBP
case) or to increase the excitation level (SDT seems to work
for benzene).

Similar comparisons are presented in Table 7 for the
singlet and triplet valence ππ* states of naphthalene. MS-
RASPT2 calculations, in which the ππ* MOs and electrons
are placed in RAS1 and RAS3 and RAS2 is left empty,
compare reasonably well with the MS-CASPT2(10,10)
valence results, but only when at least up to triple (SDT)
excitations are considered (at least for the excited states).
Otherwise, just by including double excitations (SD), devia-
tions up to 0.8 eV are observed, for instance, for the 21B3u

state (results not included here). The addition of quadruple
excitations (SDTQ) has a large effect on the higher-lying
singlet states. As for prior cases, we emphasize two aspects:
(i) the lack of the relevant MOs in the RAS2 space provides
a poor reference description, and (ii) the valence space alone
(in the absence of Rydberg MOs) cannot be used to get
accurate values with respect to experimental results, except
for the lowest-lying states. In Table 7, we also report previous
CASPT2(10,11) results in which Rydberg MOs and states
were considered.67 In this case, the CASPT2/RASPT2
method yields its expected level of accuracy, 0.1-0.3 eV.

At this point, we should notice that it is not possible to
make a direct comparison between the old calculations and
the present ones because, besides the use of Rydberg orbitals
in the old calculations, the IPEA shift is not the same (see
Computational Details). However, we still report the old
results because it is always useful to collect in a single
document several results on the same system, and the old
results are more directly comparable to experimental results
because of the presence of the Rydberg basis functions in
the basis set and Rydberg orbitals in the active space. The
same is also true for all results reported in Tables 8-17.

3.D. Heterocyclic Compounds: Furan, Pyrrole, Pyri-
dine, Pyrazine, and Pyrimidine. As for prior cases, the
calculations on these organic heterocyclic molecules have
the purpose of establishing the accuracy of the partition in
which the RAS2 space is left empty, while the valence ππ*
electrons and MOs are located in RAS1 and RAS3. This
partition is very appealing because of its simplicity and its
great potential for larger systems, but it requires careful
checking. Once again the comparison will be performed
toward valence CASPT2 calculations, in which the full
valence space (ππ* and n lone-pair MOs) was included in
the CAS. The comparison toward the experimental values
would require the simultaneous inclusion of Rydberg MOs
and states, as shown previously.63 Technical details about
the calculations are reported in the SI.

An inspection of Tables 8 (furan) and 9 (pyrrole) shows
that the RASPT2(6,m,m;3,0,2) calculations increase their
accuracy with respect to valence CASPT2 in the order SDT,
SD/SDT, and SDTQ (excitation level of RAS1 and RAS3).

Table 6. Excitation Energies (eV) of the Low-Lying Singlet
and Triplet Valence ππ* States of Benzene Optimized at
DFT/B3LYP Level Using TZVP Basis Seta

RASPT2(6,m,m;3,0,3)b

state SD
SD/

SDTc SDT SDTQ CASPT2d RASPT2e exptlf

11A1g

11B2u (ππ*) 5.28 5.01 5.02 5.02 5.02 4.93 4.90
11B1u (ππ*) 6.39 6.23 6.24 6.34 6.35 6.44 6.20
21E1u (ππ*) 7.19 6.80 6.81 6.78 6.89 6.93 6.94
11E2g (ππ*) 8.16 7.60 7.61 7.62 7.61 7.94 7.8
13B1u (ππ*) 4.48 4.14 4.15 4.13 4.18 3.94
13E1u (ππ*) 4.96 4.79 4.80 4.85 4.85 4.76
13B2u (ππ*) 4.96 5.47 5.48 5.60 5.61 5.60
13E2g (ππ*) 7.82 7.42 7.43 7.26 7.43 7.24-7.74

a Leaving the RAS2 space empty is tested in RASPT2.
b MS-RASPT2(6,m,m;3,0,3)/TZVP, with m being the indicated level
of excitation: SD, SDT, or SDTQ, excluding Rydberg orbitals and
states. c MS-RASPT2(6,2,2;3,0,3)(SD) for the ground state and
MS-RASPT2(6,3,3;3,0,3)(SDT) for the excited state. See text.
d Present MS-CASPT2(6,6)/TZVP, excluding Rydberg orbitals and
states. e MS-RASPT2(12,3,3;3,6,12)(SDT)/TZVP, including Rydberg
orbitals and states. See Table 4. f Experimental data. See refs 65
and 66.
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The RAS(SDTQ) partition typically yields results very close
to the full CAS calculation.77

Only when reaching a SDTQ level of excitation, which
can be prohibitive for larger molecules, can the calculations
be considered really accurate. This shows that in some cases
it might not be practical to leave RAS2 empty when
computing excited states. In order to compare with experi-
mental results, the Rydberg MOs and states may have to be
included in the calculation, as shown by previous CASPT2
calculations,63 whose accuracy was established to be within
0.1 eV.

Tables 10, 11, and 12 provide data for the same type
of calculations for the azabenzenes pyridine, pyrazine, and
pyrimidine. Both valence ππ* and nπ* states are consid-
ered. The performance of RASPT2(10,m,m;5,0,3) versus

CASPT2(10,8) is similar to that in the furan and pyrrole
cases, although in pyridine the nπ* states are less accurately
described at the SDT level than at the SD/SDT level. The
effect is less pronounced for the other two molecules. In
general, we observe that for states below 7.0 eV the deviation
of the SDT and SDTQ RAS calculations falls within a value
of 0.2 eV compared to valence CASPT2. On the other hand,
for higher lying states, the deviation can reach up to 0.5 and
0.3 eV at the SDT and SDTQ levels, respectively. It can be
therefore concluded that the empty-RAS2 approach should
be used with caution. Even for low-lying roots, a SD or SDT
level of excitation may not suffice to obtain a 0.2 eV
accuracy, and combining the SD and SDT levels could be a
better alternative (considering that extending to SDTQ is

Table 7. Excitation Energies (eV) of the Singlet and Triplet Valence ππ* States of Naphthalene (D2h), Leaving the RAS2
Space Empty

RASPT2(10,m,m;5,0,5)a

state SD/SDTb SDT SDTQ CASPT2c CASPT2d exptle

11Ag

11B3u (ππ*) 4.25 4.29 4.23 4.26 4.03 3.97, 4.0
11B2u (ππ*) 4.65 4.69 4.61 4.62 4.56 4.45, 4.7
21Ag (ππ*) 5.98 6.02 6.00 6.05 5.39 5.50, 5.52
11B1g (ππ*) 5.79 5.83 5.87 5.94 5.53 5.27, 5.22
21B3u (ππ*) 5.94 5.98 6.20 6.05 5.54 5.63, 5.55, 5.89
21B2u (ππ*) 6.17 6.21 6.12 6.13 5.93 6.14, 6.0
21B1g (ππ*) 6.74 6.79 6.35 6.34 5.87 6.01, 6.05
31Ag (ππ*) 6.77 6.81 6.66 6.72 6.04
13B2u (ππ*) 3.22 3.26 3.21 3.26 3.04f 2.98f,g

13B3u (ππ*) 0.90 0.94 0.90 0.96 0.80
13B1g (ππ*) 1.22 1.26 1.23 1.27 1.14 1.30 - 1.35g

23B2u (ππ*) 1.32 1.36 1.41 1.38 1.20
23B3u (ππ*) 1.48 1.52 1.45 1.51 1.36
13Ag (ππ*) 2.22 2.26 2.25 2.28 2.18 2.25g

23B1g (ππ*) 2.68 2.72 2.72 2.70 2.61 3.12g, 3.0g

23Ag (ππ*) 3.03 3.07 3.04 3.03 2.73
33Ag (ππ*) 3.15 3.19 3.14 3.17 2.81 2.93g

33B1g (ππ*) 3.42 3.46 3.40 3.39 3.14

a MS-RASPT2(10,m,m;5,0,5)/TZVP results, with m the indicated level of excitation: SD, SDT, or SDTQ, excluding Rydberg orbitals and
states. b MS-RASPT2(10,2,2;5,0,5)(SD) for the ground state and MS-RASPT2(10,2,2;5,0,5)(SDT) for the excited state. See text. c Present
MS-CASPT2(10,10)/TZVP results, excluding Rydberg orbitals and states. d CASPT2(10,11), ANO-L 3s2p1d/2s+2s2p2d. Rubio et al.,67

including Rydberg orbitals and states. e Experimental optical data in gas phase and solution: George and Morris,68 Huebner et al.,69 Mikami
and Ito,70 Dick and Hohlneicher,71 Klevens and Platt,72 Bree and Trirunamachandran.73 f Lowest-lying singlet (11Ag)-triplet (13B2u) vertical
excitation and band absorption maximum. The other excitation energies for the triplet states are referred to the 13B2u triplet state.
g Triplet-triplet absorption experimental data: Hunziker74,75 and Meyer et al.76

Table 8. Excitation Energies (eV) of the Low-Lying Singlet
and Triplet Valence ππ* States of Furan (C2v), Leaving the
RAS2 Space Empty

RASPT2(6,m,m;3,0,2)a

state SD/SDTb SDT SDTQ CASPT2c CASPT2d exptle

11A1

11B2 (ππ*) 6.55 6.58 6.37 6.28 6.04 6.06
21A1 (ππ*) 6.61 6.64 6.49 6.47 6.16
31A1 (ππ*) 8.40 8.43 8.05 8.04 7.74 7.82
13B2 (ππ*) 4.51 4.54 4.54 4.28 3.99 4.02
13A1 (ππ*) 5.76 5.79 5.56 5.53 5.15 5.22

a MS-RASPT2(6,m,m;3,0,2)/TZVP, with m the indicated level of
excitation: SD, SDT, or SDTQ, excluding Rydberg orbital and
states. b MS-RASPT2(6,2,2;3,0,2)(SD) for the ground state and
MS-RASPT2(6,3,3;3,0,2)(SDT) for the excited state. See text.
c Present MS-CASPT2(6,5)/TZVP, excluding Rydberg orbital and
states. d CASPT2(6,10), ANO-L 4s3p1d/2s1p+2s2p2d. Serrano-
Andrés et al.63 including Rydberg orbitals and states. e Experimental
data. Flicker et al.78

Table 9. Excitation Energies (eV) of the Low-Lying Singlet
and Triplet Valence ππ* States of Pyrrole (C2v), Leaving
the RAS2 Space Empty

RASPT2(6,m,m;3,0,2)a

state SD/SDTb SDT SDTQ CASPT2c CASPT2d exptle

11A1

21A1 (ππ*) 6.40 6.54 6.30 6.28 5.92
11B2 (ππ*) 6.82 6.96 6.67 6.62 6.00 5.98
31A1 (ππ*) 8.18 8.32 7.94 7.92 7.46 7.54
13B2 (ππ*) 4.64 4.78 4.50 4.48 4.27 4.21
13A1 (ππ*) 5.22 5.35 5.29 5.43 5.16 5.10

a MS-RASPT2(6,m,m;3,0,2)/TZVP, with m the indicated level of
excitation: SD, SDT, or SDTQ, excluding Rydberg orbital and
states. b MS-RASPT2(6,2,2;3,0,2)(SD) for the ground state and
MS-RASPT2(6,3,3;3,0,2)(SDT) for the excited state. See text.
c Present MS-CASPT2(6,5)/TZVP, excluding Rydberg orbital and
states. d CASPT2(6,10), ANO-L 4s3p1d/2s1p+2s2p2d,63 including
Rydberg orbitals and states. e Experimental data. Flicker et al.,78

Bavia et al.,79 and Van Veen.80
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actually quite expensive). Otherwise, for higher-lying states,
the inclusion of Rydberg orbitals is indispensable.

3.E. DNA/RNA Nucleobases: Adenine, Thymine,
Uracil, and Cytosine. In this section, we describe the results
of the CASPT2 and RASPT2 study of the DNA/RNA
nucleobases adenine, thymine, uracil, and cytosine. We have
employed partitions of the RAS spaces similar to those
described in the previous section; namely, the valence ππ*
and lone-pair orbitals have been distributed in RAS1
(Hartree-Fock occupied MOs) and RAS3 (Hartree-Fock
unoccupied MOs), and RAS2 has been left empty. The results

are compared with full ππ* and lone-pair valence and
valence plus Rydberg CASPT2 calculations and with ex-
perimental data.

Table 13 describes the results for the singlet states of
adenine. There is an overall agreement within 0.2-0.3 eV
among the various sets of calculations. We have not reported
here calculations of the type RASPT2(12,2,2;6,0,4)(SD)
(RAS2 space empty), which display deviations close to 0.6
eV for some states. It was shown previously that the SD
level of excitation is unreliable for excited states if the RAS2
space is not balanced, including, for the states under
consideration, the MOs largely modifying their occupation
number in the excitation process. The reader must be warned
about the comparison of some of the previous CASPT2
results for nπ* transitions. In some cases, the proper lone-

Table 10. Excitation Energies (eV) of the Singlet and
Triplet Valence ππ* and nπ* States of Pyridine (C2v)

RASPT2(8,m,m;4,0,3)a

state SD/SDTb SDT SDTQ CASPT2c CASPT2d exptle

11A1

11B1 (nπ*) 5.07 5.40 5.15 5.05 4.91 4.59
11A2 (nπ*) 5.38 5.71 5.42 5.35 5.17 5.43
11B2 (ππ*) 4.74 5.03 5.26 5.10 4.84 4.99
2 1A1 (ππ*) 6.47 6.68 6.71 6.57 6.42 6.38
31A1 (ππ*) 7.31 7.49 7.48 7.12 7.23 7.22
21B2 (ππ*) 7.16 7.10 7.31 7.17 7.48
41A1 (ππ*) 8.25 8.51 8.47 8.23 7.96
31B2 (ππ*) 8.07 8.34 8.42 8.21 7.94
13A1 (ππ*) 4.34 4.67 4.44 4.32 4.05 4.10
13B1(nπ*) 4.52 4.84 4.69 4.50 4.41
13B2 (ππ*) 4.80 5.09 4.89 4.82 4.56 4.84
23A1 (ππ*) 5.00 5.34 5.18 5.02 4.73
13A2 (nπ*) 5.37 5.71 5.42 5.36 5.10
23B2 (ππ*) 6.40 6.74 6.64 6.69 6.02
33A1 (ππ*) 7.71 8.04 7.86 7.68 7.34
33B2 (ππ*) 7.17 7.53 6.97 6.88 7.28

a MS-RASPT2(8,m,m;4,0,3)/TZVP, with m the indicated level of
excitation: SD, SDT, or SDTQ, excluding Rydberg orbitals and
states. b MS-RASPT2(8,2,2;4,0,3)(SD) for the ground state and
MS-RASPT2(8,3,3;4,0,3)(SDT) for the excited state. See text.
c Present MS-CASPT2(8,7)/TZVP, excluding Rydberg orbitals and
states. d CASPT2(8,12), ANO-L 4s3p1d/2s1p. Lorentzon et al.81

including Rydberg orbitals and states. e Experimental data,
Bolovinos et al.82

Table 11. Excitation Energies (eV) of the Singlet Valence
ππ* and nπ* States of Pyrazine (D2h)

RASPT2
(10,m,m;5,0,3)a

state
SD/

SDTb SDT SDTQ CASPT2c CASPT2d exptle

11Ag

11B1u (nπ*) 4.06 4.21 3.95 4.09 3.85 3.83
11Au (nπ*) 4.67 4.82 4.65 4.67 4.63
11B2u (ππ*) 5.02 5.18 4.98 5.04 4.76 4.81
11B2g (nπ*) 5.55 5.71 5.39 5.55 5.46
11B3g (nπ*) 6.50 6.65 6.31 6.47 6.10
11B3u (ππ*) 6.61 6.77 6.43 6.68 6.69 6.51
21B3u (ππ*) 7.82 7.97 7.46 7.57 7.53 7.67
11B2u (ππ*) 7.55 7.70 7.51 7.44 7.74 7.67
11B1g (ππ*) 8.33 8.48 8.37 8.43 8.31
21Ag (ππ*) 8.71 8.87 8.67 8.68 8.22

a MS-RASPT2(10,m,m;5,0,3)/TZVP, with m the indicated level
of excitation: SD, SDT, or SDTQ, excluding Rydberg orbital and
states. b MS-RASPT2(10,2,2;5,0,3)(SD) for the ground state and
MS-RASPT2(10,3,3;5,0,3)(SDT) for the excited state. See text.
c Present MS-CASPT2(10,8)/TZVP, excluding Rydberg orbitals
and states. d CASPT2(10,12), ANO-L 4s3p2d/3s2p. Fülscher and
Roos83 including Rydberg orbitals and states. e Experimental data.
Innes et al.,84 Bolovinos et al.,85 and Okuzawa et al.86

Table 12. Excitation Energies (eV) of the Singlet Valence
ππ* and nπ* States of Pyrimidine (C2v)

RASPT2
(10,m,m;5,0,3)a

state
SD/

SDTb SDT SDTQ CASPT2c CASPT2d exptle

11A1

11B1 (nπ*) 4.13 4.49 4.14 4.33 3.81 3.8 - 4.1
11A2 (nπ*) 4.58 4.94 4.55 4.71 4.12 4.62
11B2 (ππ*) 5.23 5.35 5.45 5.33 4.23 5.12
21A1 (ππ*) 6.67 7.04 6.96 6.96 6.7 6.7
31A1 (ππ*) 7.71 8.08 7.75 7.54 7.57 7.57
21B2 (ππ*) 7.50 7.60 7.57 7.37 7.32 7.57
41A1 (ππ*) 7.86 8.22 7.82 7.86 7.82
31B2 (ππ*) 8.61 9.00 8.80 8.76 8.31 8.8

a MS-RASPT2(10,m,m;5,0,3)/TZVP, with m the indicated level
of excitation: SD, SDT, or SDTQ, excluding Rydberg orbital and
states. b MS-RASPT2(10,2,2;5,0,3)(SD) for the ground state and
MS-RASPT2(10,3,3;5,0,3)(SDT) for the excited state. See text.
c Present MS-CASPT2(10,8)/TZVP, excluding Rydberg orbitals
and states. d CASPT2(8,12), ANO-L 4s3p2d/3s2p. Fülscher et
al.87 including Rydberg orbitals and states. e Experimental data,
Bolovinos et al.82 See also ref 88.

Table 13. Excitation Energies (eV) of the Singlet Valence
ππ* and nπ* States of Adenine (Cs)

RASPT2
(12,m,m;6,0,4)a

state
SD/

SDTb SDT SDTQ CASPT2c CASPT2d exptle

11A′
21A′ (ππ*) 5.10 5.18 5.14 5.10 5.13 4.6
31A′ (ππ*) 5.13 5.21 5.17 5.17 5.20 4.8 - 4.9
11A′′ (nπ*) 5.07 5.15 4.97 5.15 f 5.4
41A′ (ππ*) 6.34 6.43 6.42 6.41 6.24 5.9 - 6.0
21A′′ (nπ*) 5.76 5.84 5.78 5.85 6.15
51A′ (ππ*) 6.40 6.48 6.47 6.48 6.72 6.3 - 6.4
61A′ (ππ*) 6.57 6.65 6.63 6.65 6.99 6.8

a MS-RASPT2(12,m,m;6,0,4)/TZVP, m indicates level of
excitation: SD, SDT, or SDTQ, excluding Rydberg orbitals and
states. RAS2 is empty here. b MS-RASPT2(12,2,2;6,0,4)(SD) for
the ground state and MS-RASPT2(12,3,3;6,0,4)(SDT) for the
excited state. See text. c Present MS-CASPT2(12,10)/TZVP,
excluding Rydberg orbitals and states. d CASPT2(12,11), ANO-L
4s3p1d/2s1p,10 including Rydberg orbitals and states.
e Experimental absorption data in solution. Mixture with the
7H-adenine tautomer has been noticed. See ref 10 for a critical
revision of the experimental results. f The active spaces lacked the
lowest-lying lone-pair orbital, missing therefore the lowest-lying π*
state.
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pair MO was left outside the active space, and the corre-
sponding state was therefore missing. This is not due to an

inaccuracy of the CASPT2 method but instead to a bad
selection of the active space.

The results on thymine and uracil in Tables 14 and 15
show different trends. In both cases, the RASPT2(SD) level
with RAS2-empty was insufficient to get quantitative results.
The SDTQ level of excitation is indispensable, which is
unfeasible for larger systems. Alternatively, it is better to
balance the calculations using SD for the ground state and
SDT for the excited states. For higher-lying states, for
instance, in the 21A′ and 31A′ ππ* states, large discrepancies
are found between the valence-Rydberg CASPT2 results
and the experimental values. The effect is even more clear
for both the ππ* and nπ* states of uracil, which is related
to the absence of the Rydberg MOs from the active space.
The advice would be to add the Rydberg MOs and avoid
the MS procedure if the diffuse MOs are not included,
because it might lead to overestimated interactions, as was
proved previously.34

Table 16 displays the results on cytosine, and the conclu-
sions are similar to those obtained for the previous pyrimidine
nucleobases. In this case, the SD(ground state)/SDT(excited
state) strategy becomes particularly accurate as compared
to that with full CASPT2. This strategy could be a cheap
alternative in cases where larger RAS2 spaces or high
excitation (SDTQ) levels are unfeasible. Once again, one
should emphasize the need to include Rydberg MOs and
states for calculations on high-lying excited states. For low-
lying states, the Rydberg MOs may be excluded, but then
the use of the multistate approach is not recommended,
because it might lead to spurious interactions.

3.F. Transition Metal Compounds and the Double
d-Shell Effect: The Nickel Atom and the Copper
Tetrachloride Dianion. Because of the strong correlation
effects associated with the 3d shell in first-row transition
metals (TM), the inclusion of a second correlating d shell
(4d) in the active space was shown to have crucial effects
on the relative state energies obtained from CASPT2 for
molecules containing first-row transition metal atoms with

Table 14. Excitation Energies (eV) of the Singlet Valence
ππ* and nπ* States of Thymine (Cs)

RASPT2(12,m,m;6,0,3)a

state SD/SDTb SDT SDTQ CASPT2c CASPT2d exptle

11A′
11A′′ (nπ*) 5.01 5.29 5.09 5.24 4.77f

21A′ (ππ*) 5.64 5.93 5.80 5.56 4.88 4.8 - 5.1
31A′ (ππ*) 6.61 6.90 6.72 6.54 5.88 6.0 - 6.1
21A′′ (nπ*) 6.37 6.65 6.43 6.54
41A′ (ππ*) 6.70 6.98 6.73 6.58 6.10 6.5 - 6.6
51A′ (ππ*) 7.59 7.87 7.38 7.19 7.13 6.9 - 7.0

a MS-RASPT2(12,m,m;6,0,3)/TZVP, m indicates the level of
excitation: SD, SDT, or SDTQ, excluding Rydberg orbitals and
states. RAS2 is empty here. b MS-RASPT2(12,2,2;6,0,3)(SD) for
the ground state and MS-RASPT2(12,3,3;6,0,3)(SDT) for the
excited state. See text. c Present MS-CASPT2(12,9)/TZVP,
excluding Rydberg orbitals and states. d CASPT2(12,11), ANO-L
4s3p1d/2s. Lorentzon et al.,89 including Rydberg orbitals and
tates. e Experimental absorption data in gas phase and solution.
See ref 89 for a critical revision of the experimental results. f See
ref 90.

Table 15. Excitation Energies (eV) of the Singlet Valence
ππ* and nπ* States of Uracil (Cs)

RASPT2(12,m,m;6,0,3)a

state SD/SDTb SDT SDTQ CASPT2c CASPT2d exptle

11A′
11A′′ (nπ*) 5.19 5.36 5.56 5.43 4.80
21A′ (ππ*) 5.84 6.01 5.93 5.90 5.00 4.8 - 5.1
31A′ (ππ*) 6.64 6.82 6.65 6.73 5.82 6.0 - 6.1
21A′′ (nπ*) 6.63 6.80 6.90 6.78 6.20
41A′ (ππ*) 6.79 6.96 6.87 6.93 6.46 6.5 - 6.6
51A′ (ππ*) 7.58 7.75 7.38 7.48 7.00 6.9 - 7.0

a MS-RASPT2(12,m,m;6,0,3)/TZVP, m indicates the level of
excitation: SD, SDT, or SDTQ, excluding Rydberg orbitals and
states. RAS2 is empty here. b MS-RASPT2(12,2,2;6,0,3)(SD) for
the ground state and MS-RASPT2(12,3,3;6,0,3)(SDT) for the
excited state. See text. c Present MS-CASPT2(12,9)/TZVP,
excluding Rydberg orbitals and states. d CASPT2(12,11), ANO-L
4s3p1d/2s. Lorentzon et al.,89 including Rydberg orbitals and
sates. e Experimental absorption data in gas phase and solution.
See ref 89 for a critical revision of the experimental results.

Table 16. Excitation Energies (eV) of the Singlet Valence
ππ* and nπ* States of Cytosine (Cs)

RASPT2
(12,m,m;6,0,3)a

state SD/SDTb SDT SDTQ CASPT2c CASPT2d exptle

11A′
21A′ (ππ*) 4.53 4.96 5.04 4.72 4.39 4.4 - 4.6
11A′′ (nOπ*) 5.49 5.92 5.85 5.52 5.00
21A′′ (nNπ*) 5.72 6.15 6.03 5.73 5.06f

31A′ (ππ*) 5.79 6.22 6.29 5.95 5.36 5.0 - 5.5
41A′ (ππ*) 6.75 7.17 7.30 6.85 6.16 5.8 - 6.3
51A′ (ππ*) 7.01 7.43 7.37 7.00 6.74 6.7 - 7.1

a MS-RASPT2(10,m,m;6,0,3)/TZVP; m indicates the level of
excitation: SD, SDT, or SDTQ, excluding Rydberg orbitals and
states. RAS2 is empty here. b MS-RASPT2(12,2,2;6,0,3)(SD) for
the ground state and MS-RASPT2(12,3,3;6,0,3)(SDT) for the
excited state. See text. c Present MS-CASPT2(12/9)/TZVP,
excluding Rydberg orbitals and states. d CASPT2(10,12), ANO-L
4s3p1d/2s.91 including Rydberg orbitals and states. e Experimental
absorption data in gas phase and solution. See ref 91 for a critical
revision of the experimental results. f See ref 3. The corresponding
lone pair is missing in the active space in ref 91.

Table 17. Comparison between CASPT2 and RASPT2
Excitation Energies (eV) of the Excited States of the Nickel
Atoma

RASPT2(10,0,m;0,6,5)CASPT2 CASPT2

exptlc3d4sb 3d4s4db

(3s3p)3d4s4db

States SD SDT SDTQ
3D (3d94s1) 0.00 0.00 0.00 0.00 0.00 0.00
3F (3d84s2) -0.33 -0.10 0.01 -0.03 0.04 0.03
1D (3d94s1) 0.01 0.28 0.29 0.24 0.24 0.33
1D (3d84s2) 1.16 1.45 1.52 1.52 1.61 1.59
1S (3d10) -0.97 1.79 2.16 2.21 2.01 1.74
3P (3d84s2) 1.48 1.68 1.79 1.76 1.85 1.86
1G (3d84s2) 2.33 2.54 2.63 2.62 2.71 2.65

a The RAS partition is 3d4s in RAS2 and 4d in RAS3, with
RAS1 empty, RAS(10,0,m;0,6,5), and different excitation levels in
RAS3. Core-valence correlation is computed at the perturbative
level (3s3p electrons). b CASPT2 and RASPT2(10,0,m;0,6,5) with
18 electrons correlated, basis set ANO-RCC 7s6p4d3f2g, SA(15)
for triplet states and SA(19) for singlet states except 1S(3d10), a
single root calculation. c Experimental data. NIST (national institute
of standards and technology).94
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a more than a half-filled 3d shell.33,36,43,92,93 This effect,
referred to as the double d-shell effect, is manifested in
particular when dealing with transitions between states with
a different 3d occupation number, e.g., 3df4s transitions
or charge-transfer (CT) transitions. The double d-shell effect
was first reported in a CASPT2 study of the low-lying states
of the nickel atom.36 Here, we report the results of a
comparative CASPT2/RASPT2 study of the lowest states in
the electronic spectra of the nickel atom and the copper
tetrachloride dianion (CuCl4

2-). The underlying motivation
of this study is to check whether it might be possible to treat
the double d-shell effect by means of the much cheaper
RASPT2 strategy by, for instance, moving the 4d shell into
RAS3. This would allow for applicability of the present
multiconfigurational approach to more extended and complex
TM systems that have so far been inaccessible or could only
be treated qualitatively, because of size limitations of the
CASSCF active space, e.g., systems with multiple TM
centers.95

The calculated results obtained for the spectrum of the Ni
atom are presented in Table 17 and compared to experimental
results. The first two columns show the CASPT2 relative
energies obtained with an active space containing 10
electrons in either the minimum valence active space (3d,
4s) or extended with an extra d shell (3d, 4s, 4d). The double
d-shell effect is clearly illustrated by these results. The
CASPT2 excitation energies obtained without a second d
shell in the active space strongly deviate from the experi-
mental data by 0.3-0.5 eV for all states except 1S (3d10),
for which an exceptionally large error of as much as 2.7 eV
is found. After including the second d-shell, the errors are
reduced to 0.2 eV for all calculated states. These results might
be further improved by also including the (4p) shell into the
active space, and by further extending the basis set.

The next three columns in Table 17 give the results
obtained from RASPT2(10,0,m;0,6,5), with m being the
electrons allowed in RAS3, representing a maximum excita-
tion level from two (SD) up to four (SDTQ). Because of the
poor convergence of the RASSCF orbital optimization, the
RASSCF(SDT) and RASSCF(SDTQ) energies have been
calculated at the CI level without orbital optimization, and
using the molecular orbitals converged at the RASSCF(SD)
level. As one can see, even at the SD level, the double-shell
effect is described reasonably well for most states, the results
deviating by at most 0.1 eV with respect to the full CASPT2
results. Minor oscillations are observed when increasing the
excitation level to SDT and further to SDTQ, but in general
there is no clear sign of a systematic improvement. An
exception is again the 1S (3d10) state. Here, going from
CASPT2 to RASPT2 leads to a significant deterioration of
the results, by 0.37 eV at the SD level, and decreasing to
0.22 eV at the SDTQ level. However, it is clear that for this
state the RASPT2 description of the double d-shell effect is
not converged with respect to the excitation level, and higher
levels of excitations are necessary for obtaining quantitative
accuracy.

As a final set of calculations, we include here the study at
the CASPT2 and RASPT2 levels of the excitation energies
of the ligand field (LF) states and a charge transfer (CT)

state in the electronic spectrum of the copper tetrachloride
dianion (CuCl4

2-). In order to compare the results with
previous reports,57,96 the same geometry (planar, D4h, with
the Cl ligands on the x and y axes) and basis sets were used.
The valence electronic structure of this molecule is presented
in Figure 2. The ground state (GS), 12B1g, has a singly
occupied molecular orbital (SOMO), σ-antibonding with
predominant Cu 3dx2-y2 character, and the lowest part in the
spectrum is built from excitations of an electron out of each
of the other four 3d orbitals, giving rise to three ligand field
(LF) states 12B2g, 12Eg, and 12A1g. An important charge-
transfer (CT) state, 22B1g, corresponding to an excitation out
of the bonding counterpart of the ground state SOMO is also
included in the calculations. This CT state belongs to the
same symmetry representation as the ground state, and it
was shown previously40 that the interaction between both
states resulting from a MS-CASPT2 treatment gives rise to
a strongly enhanced covalent character of the GS Cu-Cl σ
bonds, by increasing the chlorine 2pσ contribution in the
GS b1g* SOMO. The purpose of the present study is therefore
not only to investigate whether the electronic spectrum of
CuCl4

2- may be satisfactorily reproduced by means of a
RASPT2 rather than a CASPT2 treatment but also to see
whether the same covalency enhancing effect for the GS may
be obtained from a MS-RASPT2 treatment. The latter may
be evaluated by comparing the Mulliken spin populations
from the CASSCF and perturbed modified (PM) CASSCF
GS wave functions obtained before and after the multistate
treatment, respectively.

The CASPT2 calculations are based on an active space
of 11 orbitals, consisting of the Cu 3d and 4d shells together
with the bonding b1g orbital. In the RASPT2 calculations,

Figure 2. Schematic representation of the geometry and
electronic structure of [CuCl4]2-.
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the correlating 4d shell was transferred into RAS3, leaving
RAS1 empty and the other six orbitals in RAS2. This then
gives results of the type RASPT2(11,0,m;0,6,5), with m
representing the RAS2fRAS3 excitation level. The calcu-
lated excitation energies obtained from either a single-state
(SS) or multistate (MS) treatment are presented in Table 18.
Looking at the SS results first, we note that for the LF states,
the results obtained from RASPT2-SDTQ calculations are
virtually indistinguishable from CASPT2. A deterioration of
the results is observed when decreasing the RASSCF
excitation level to SDT and further to SD, although the
accuracy of the results obtained from the latter treatment,
within 0.2 eV, is still acceptable. On the other hand, for the
CT states, the RASPT2 treatment seems to be more
problematic, giving an excitation energy that deviates more
from the CASPT2 results as the level of excitation is
increased. Only two of the states included in the calculations
belong to the same B1g representation. A MS treatment will
therefore leave the total energy of the other states unaffected,
while stabilizing the 12B1g ground state and destabilizing the
22B1g CT state. This then gives rise to a calculated MS-
CASPT2 spectrum in which all three LF states are raised in
energy by the same amount, 0.13 eV, as compared to SS-
CASPT2, while the 22B1g CT state is raised by twice this
amount. The results obtained from MS-RASPT2 follow the
same trend with respect to SS-RASPT2. As such, the same
conclusions concerning the accuracy obtained from RASPT2
for the LF and CT states may be drawn from Table 18, as
already noted for the SS results. As compared to the
experimental excitation energies for the 12B2g and 12Eg (LF)
states, the SS treatment yields better excitation energies than
MS-CASPT2. The addition of the MS step does not increase
the accuracy of the results at any of the levels, CASPT2 or
RASPT2. This is not unexpected because the active space
requirements with MS are larger than for the lower-level
methods. It has been shown before that the addition of
angular correlation, that is, the inclusion of orbitals with
different angular momentum quantum numbers in the active
space, largely improves the MS results.34

It should finally be mentioned that the RASSCF calcula-
tions also reproduce the CASSCF Mulliken spin populations
for all states (see SI). In particular, for the ground state, the
spin population on copper obtained from RASSCF, 0.84,
reflects a very ionic Cu-Cl bond. As was shown in a
previous study,57 this ionic description gives rise to calculated
EPR g factors that deviate considerably more from the free-
electron value than is observed from experimental results.
A significant improvement of the calculated g factors may
be obtained by making use instead of the PM CASSCF wave

function, giving rise to a more covalent description of the
Cu-Cl bonds, with a Mulliken spin population on copper
that is decreased by 7%, thus approaching the value of 0.62
( 0.02 deduced from experimental results.

The most important conclusion to be drawn from the
results obtained in this section is that, in general, moving
the 4d shell into the RAS3 space is a good strategy that leads
to much less expensive calculations in transition metal
systems without a considerable loss in accuracy. This then
allows for the extension of the methodology to larger
systems, both increasing the number of transition metal atoms
or including additional ligand molecules. For instance, the
number of CSFs decreases from near 98 000 in a CASS-
CF(10,11) calculation to 4300, 19 000, and 47 500 at the
RASSCF(SD), SDT, and SDTQ levels, respectively (for the
Ni calculations, see SI).

4. Summary and Conclusions

The electronic excited states of a number of organic (free
base porphin, ethene, benzene, naphthalene, furan, pyrrole,
and several azobenzenes and nucleobases) and inorganic (the
nickel atom and the copper tetrachloride dianion) systems
have been computed at the RASSCF/RASPT2/MS-RASPT2
(RAS) levels of calculation using different active space
partitions and strategies. The results have been compared to
those obtained with well-established procedures like CASSCF/
CASPT2/MS-CASPT2 (CAS) or CCSD, and to experimental
values, in order to determine the accuracy of several
procedures used to divide the RAS space. Our main goal
was to establish computational strategies that would provide
the most accurate results at reasonable computational costs
that one could eventually employ for larger systems. The
RAS approaches have many possible ways to define the
active spaces for the multiconfigurational calculation, and
therefore systematic selection procedures have to be devel-
oped and calibrated.

Free base porphin has been first investigated with several
partition procedures. RASPT2 has proved to be an excellent
strategy to avoid arbitrary divisions of the π space in a system
in which the full-π active space (26 electrons in 24 MOs) is
out of reach for the CASPT2 method. It has been shown
that in the RASPT2 method the proper definition of the RAS2
space (in which a full-CI is performed to define the
configurational reference space) is crucial to assessing the
accuracy of the calculations. In particular, an initial analysis
of the occupation numbers displayed by the relevant MOs,
even at a simple RASSCF(SD) level of calculation, is very
useful to determine the composition of RAS2. When

Table 18. Excitation Energies (eV) of CuCl42- Computed at the CASPT2(11,11) and RASPT2(11,0,n;0,6,5) Levels of
Calculation Compared with the Available Experimental Data

states
SS-CASPT2

(11,11)
MS-CASPT2

(11,11)

SS-RASPT2(11,0,m;0,6,5) MS-RASPT2(11,0,m;0,6,5)

exptlaSD SDT SDTQ SD SDT SDTQ

12B1g (GS)
12B2g (LF) 1.52 1.65 1.36 1.48 1.52 1.51 1.63 1.67 1.55
12Eg (LF) 1.77 1.90 1.60 1.72 1.76 1.75 1.87 1.91 1.76
12A1g (LF) 2.00 2.13 1.91 1.92 1.99 2.06 2.07 2.14
22B1g (CT) 4.60 4.86 4.51 4.52 4.42 4.81 4.81 4.73

a See refs 57, 96.
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computing a RASPT2 energy difference, the highest accuracy
is obtained when the MOs changing their occupation number
from one state (typically the ground state) to the other (an
excited state) the most are simultaneously included in the
RAS2 space, leaving the other less significant MOs in the
RAS1/RAS3 spaces. If this requirement is fulfilled, a
single-double (SD) level of excitations in these two latter
active spaces partitions is sufficient to get a high accuracy.
In free base porphin, as is typical in many other π organic
systems, Gouterman’s four MOs (HOMO, HOMO-1, LUMO,
and LUMO+1) form the basic set required to describe the
four low-lying ππ* excited states, and therefore it will be
sufficient to include them in RAS2 while leaving the
remaining ππ* MOs in RAS1/RAS3 and reaching a SD level
of excitation to get accurate results. Higher states will
however require extension of the RAS2 space to include
additional MOs. It is possible to design a less straightforward
strategy and perform calculations for each of the two states
with different active spaces. If the proper MOs are excluded
from RAS2, the results are unbalanced in the CI treatment,
and the second-order perturbation correction may not be able
to compensate the results. Particularly for this case, a SD
level of excitation is clearly insufficient. Although not as
accurate as the inclusion of the proper MOs in RAS2, there
are some additional strategies that may help to slightly
improve the results even if some important MOs are excluded
from RAS2, for instance, using different levels of excitation
for the two considered states, like SD for the ground and
SDT for the excited state, or increasing the overall excitation
as much as possible, SDT, or even better, SDTQ, although
these latter strategies might be impossible to apply because
of the very large configurational spaces. All of these results
open the possibility to use RASPT2 for many organic
systems with extended π spaces without a further loss of
accuracy due to restrictions in the size of the active space.

Calculations on the valence and Rydberg singlet and triplet
excited states of ethene and benzene have illustrated the
advantages of RASPT2 versus CASPT2 when large active
spaces including both valence and Rydberg states and MOs
are required. A new strategy for the active MO partition has
been used in which the Rydberg MOsstypically nine (n )
3) for common organic systemssare placed in RAS3, leaving
in the RAS2 space the valence ππ* MOs and electrons, and
allowing, apart from the full-CI expansion within RAS2, just
single excitations toward RAS3. The advantage of the RAS
approach, whose accuracy is similar to that of a full CAS
calculation, is that the Rydberg orbitals can be moved out
of the RAS2 space. The computational effort is therefore
substantially decreased, and the approach can be employed
to study systems with large π-valence spaces. Also, the
calculations are simpler because they permit the use of a
unique space for the different symmetries. This approach,
however, does not solve directly the valence-Rydberg
mixing problems already found in CASSCF/CASPT2, lead-
ing to too high excitation energies and heavily mixed wave
functions with too large orbital extensions for some valence
states. As previously shown, when only the ππ* MOs are
included in the RAS2 space, the multistate (MS) procedure,
MS-RASPT2, is required to solve the mixing and provide

orthogonal states with clear valence or Rydberg mixings. In
the ethene case, we have also shown that the inclusion of
the σσ* MOs in the RAS1 and RAS3 spaces (not possible
in general for CAS calculations) opens new possibilities but
also brings some problems. Since one cannot include in
RAS2 both the ππ* and σσ* MOs, the RASPT2(SD) level
of calculation is not sufficient to correctly describe the σσ*
excitations. Increasing the excitation level to SDT solved
the problem in the ethene case, although this might not be a
general rule. When including both π and σ correlation within
the CI reference space, the valence-Rydberg mixing was
solved at the RASPT2(SDT) level, without using the MS-
RASPT2(SDT) procedure. This shows the importance of
electronic correlation in defining the wave function when
dealing with the valence-Rydberg mixing problem.

Calculations on different heteroaromatic organic mol-
ecules, including furan, pyrrole, and some azabenzenes and
nucleobases, have shown that the most computationally
advantageous RASPT2 strategy, consisting of leaving the
RAS2 space empty and placing the occupied and unoccupied
MOs in RAS1 and RAS3, respectively, is, in general, not
particularly accurate. For low-lying states, the lack of balance
between the ground and excited states caused by the improper
definition of RAS2 can be partially compensated if different
levels of excitations are used when defining the configura-
tional space, in particular if using SD to compute the ground
and SDT to obtain the excited state. The strategy yields
poorer results for higher-lying states, mainly because of the
effect of the absent Rydberg MOs and states, which should
be included in the calculations to obtain accurate results.

Regarding the calculation of the first-row transition metal
systems, our main goal was to analyze the effect on the
excitation energies of moving the 4d correlating shell from
RAS2 to RAS3. The electronic spectra of the nickel atom
and the copper tetrachloride dianion have been analyzed. The
main conclusion is that, overall, the RASPT2 calculations
quite well reproduce the corresponding CASPT2 results (to
within 0.1-0.2 eV), although a few exceptional cases were
also observed, e.g., the 1S (3d10) state of the nickel atom.
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Abstract: The performance of DFT methodology to predict with accuracy the isotropic hyperfine
coupling constants (hfccs) of aromatic radicals containing 14N nucleus is investigated by an
extensive study in which 165 hfccs, belonging to 38 radical species, are obtained from
calculations with B3LYP and PBE0 functionals combined with 6-31G*, N07D, TZVP, and EPR-
III basis sets, and are compared to the reported experimental data. The results indicate that the
selection of the basis set is of fundamental importance in the calculation of 14N hfccs, whereas
there is not so great an influence on the accurate computation of that parameter for 1H nuclei.
The values of the calculated 14N coupling constants of aromatic nitroxide radicals using DFT
methodology are noticeably lower than the experimental ones. A very simple relation to predict
these hfccs with high accuracy is proposed on the basis of the present results, as an interesting
alternative to the highly computationally demanding integrated approaches so far used.

I. Introduction

Free radicals containing nitrogen nucleus are present in many
processes of chemical, physical, and biological interest. Thus,
the knowledge of their electronic distribution is very valuable
to get an insight into those processes. Especially remarkable
is the interest in nitroxide radical chemistry, due to their role
as spin labels and spin probes, thanks to their characteristic
long lives and spectromagnetic properties.1 The nuclear
hyperfine interaction, experimentally measured by electron
paramagnetic resonance (EPR) spectroscopy, provides informa-
tion about the electronic distribution, so the correct interpretation
of the EPR spectra is of fundamental importance.2,3 In this
regard, quantum mechanical (QM) calculations can act as
an effective tool for that challenge.4 The interaction between
magnetic nuclei and unpaired electrons is represented by the
hyperfine tensor, which can be factored into both an isotropic
(spherically symmetric) and an anisotropic (dipolar) term.
The isotropic term (aiso), so-called isotropic hyperfine
coupling constant (hfcc), depends on the spin density at the
nucleus position, making this property very sensitive to the
level of the calculation, specifically to the electron correla-

tion, the one-electron basis set, and the use of an adequate
molecular geometry.

In previous papers,5-8 we investigated the reliability of
density functional theory (DFT) methodology to compute
hfccs of different nuclei of a large number of both organic
and inorganic radicals on their ground state. The main
conclusion was that the best overall results are obtained when
B3LYP9,10 functional is combined with TZVP11 or EPR-III12,13

basis sets, yielding highly accurate values of hfccs of nuclei
belonging to the three first rows. An exception was found
for the 14N nuclei in which the smaller and less computa-
tionally demanding 6-31G*14,15 basis set yields hfcc values
closer to the experimental ones, probably due to the fact that
it has six d functions instead of the five d functions of the
TZVP and EPR-III basis sets, providing an additional s
function to complete the s space.

Afterward, Barone and co-workers developed a new
polarized split-valence basis set for the calculation of hfccs
of second- and third-row atoms, the so-called N07D,16,17 by
adding a reduced number of polarization and diffuse func-
tions to the 6-31G set. In order to get accurate values of the
hfccs and retain, or even improve, the good performance of
the parent 6-31G* basis set for other properties dominated* Corresponding author e-mail: paloma.calle@uam.es.
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by valence orbitals, the new set was tailored by optimizing
the core-valence s functions and reoptimizing polarization
and diffuse p functions. Such a parametrization was made
specifically for both the B3LYP and the parameter free
PBE018 functionals. These authors reported calculations on
a large set of radicals, in which the results obtained with
B3LYP/N07D and PBE0/N07D combinations were com-
pared to those produced by 6-31G*, TZVP and EPR-III basis
sets, all in conjunction with B3LYP functional. The general
conclusion was that both computational models, B3LYP/
N07D and PBE0/N07D, provide good agreement with
experimental data and predictive power at lower computa-
tional cost. For radicals containing oxygen and nitrogen
atoms, they obtained poorer correlation between computa-
tions and experiments.16 These lower correlation coefficients
for 14N and 17O could be related to the reduced range of
experimental data (about 30 G).

As far as we know, all previous works performed on large
sets of radicals with the aim of establishing a computational
protocol able to predict aiso(14N) with high reliability, are
mainly performed on nonaromatic nitrogen radicals, even
though the aromatic counterparts have a lot of applications
in different fields, specially nitroxide radicals, that are
probably the most widely used spin probes and spin labels.
The lack of a systematic theoretical study on hfccs of
aromatic nitrogen radicals, which is expected to arouse a lot
of interest, prompted us to investigate the performance of
DFT methodology to predict with precision such constants
in this work. The main goal is undertaken by performing an
extensive study on a set of conjugated radicals containing
14N nucleus, in which calculation of the hfccs is carried out
with the levels of theory formerly proved as the most
adequate for the evaluation of this constant, that is, by
employing B3LYP and PBE0 functionals combined with
6-31G*, N07D, TZVP and EPR-III basis sets on the
previously optimized structures. Computed values are com-
pared to the available experimental data by a statistical
analysis. Besides the conclusions regarding the accuracy of
the different methodologies on the prediction of this magnetic
property, this work seeks to be a useful tool for EPR
spectroscopists, since it facilitates the correct assignment of
the experimental hfccs from reliable theoretical values.

II. Computational Details

A set of 38 neutral aromatic radicals containing at least one
14N nucleus (nuclear spin I ) 1) is considered in this study.
Their schematic structures are depicted in Figure 1. The
molecular geometries of the radicals on their electronic
ground state are fully optimized at the B3LYP level
employing the 6-31G* basis set due to its low computational
cost and good results according to previous works.5-8

Harmonic vibrational frequencies are computed at the same
level of theory as the geometry optimization to confirm the
nature of the stationary points. The hfccs of the radicals are
evaluated on the optimized structures at five different levels
of theory: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D,
B3LYP/TZVP, and B3LYP/EPR-III.

The 6-31G* basis set is a small double-� basis plus
polarization, whereas the TZVP is a DFT-optimized valence

triple-� basis. EPR-III is a larger basis set (triple-� basis
including diffuse functions, double d-polarizations, and a
single set of f-polarization functions) optimized for the
computation of hfccs by DFT methods. As previously
mentioned, N07D is a polarized split-valence basis set also
developed for the calculation of hfccs with an optimum
compromise between reliability and computer time.16,17 It
is important to note that, although it has the same name,
N07D basis set is slightly different for application with either
the B3LYP or the PBE0 functional, since it has been
parametrized specifically for each of them. The standard
programs for the calculation of molecular structures use five
d Cartesian Gaussian functions for TZVP and EPR-III basis
sets, and six d functions for 6-31G* basis set. The redundant
set of six d functions has to be employed also for N07D
basis set, since it has been developed with this feature.16,17

All calculations are carried out with the Gaussian03 software
package.19

III. Results and Discussion

A total of 165 hfccs for the radicals drawn in Figure 1 has
been calculated, on the corresponding optimized geometries,
those with available experimental data, from which 47 are
aiso of 14N and 114 are aiso of 1H. The four remaining
coupling constants, which correspond to 33S, 13C, and 17O
nuclei, have not been taken into account in the data analysis,
being the target of the paper comparison between calculated
and experimental hfccs of 14N and 1H nuclei.

The name, the symmetry of the electronic ground state,
and the total energies corresponding to the minimum for each
radical, computed at the five different levels of theory, are
shown in Table S1 in the Supporting Information (SI).

The calculated and the experimental aiso are summarized
in Table 1. The first column corresponds to the number of
each radical. The second column indicates the nuclei with
their mass numbers, preceded by a number to indicate the
equivalent atoms, and with a subscript to identify the
nonequivalent atoms unequivocally, when necessary.
The following five columns report the theoretical hfcc
values obtained at the different levels of theory. In the last
two columns, the experimental hfccs and their bibliographic
references are given. As is well-known, the sign of aiso is not
determined by EPR experiments; it is assigned on the basis of
theoretical results. Thus, the experimental data are given as
absolute values and the sign has been included just in the
theoretical data. The assignment of the specified pairs of
experimental hfccs of radicals 8, 13, and 34 has been
exchanged according to the theoretical results obtained in
this work.

A general inspection of the data shown in Table 1 indicates
that the aiso of 1H are predicted in very good agreement with
the experimental values, regardless of the level of theory
employed. However, different conclusions are extracted from
the observation of the theoretical values of aiso(14N). In
general, 6-31G* and N07D basis set present the best
predictive behavior, yielding values closer to the experi-
mental data than those obtained by EPR-III or TZVP basis
sets, which tend to underestimate aiso(14N), specially TZVP
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basis set. These results are consistent with that obtained in
our previous work on nitrogen coupling constants of non-
aromatic radicals,8 which pointed out that the 6-31G* basis
set leads to more accurate results than TZVP and EPR-III
basis sets, in spite of being smaller. The additional s function
implicitly added when using a 6 d set plays a non negligible

role in completing the s space, and thus in obtaining more
accurate hfccs, in case of small or medium size basis sets
(e.g., 6-31G*, N07D). However, this is not the case for larger
basis sets like TZVP and EPR-III, since the results are very
similar using either 5 or 6 d functions.8,16,17 Accordingly, a
set of 5 d functions is the standard for TZVP and EPR-III

Figure 1. Geometrical structures of the studied radicals.
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Table 1. Theoretical Isotropic Hyperfine Coupling Constants (G) of the Studied Radicals Calculated at Different Levels of
Theorya

aiso (theoretical) experimental

no. nuclei PBE0/ B3LYP/ B3LYP/ B3LYP/ B3LYP/ aiso ref
N07D 6-31G* N07D TZVP EPR-III

1 14N +9.6 +9.3 +9.2 +6.1 +7.3 7.95 20
1HR -14.0 -14.7 -14.5 -14.1 -13.8 12.94
1H2,6 -6.7 -6.8 -6.7 -6.2 -6.3 6.18
1H3,5 +3.2 +2.9 +2.7 +2.6 +2.7 2.01
1H4 -7.7 -7.9 -7.8 -7.3 -7.6 8.22

2 14N +11.3 +10.7 +10.7 +7.5 +8.6 9.70 21
1H2,6 -6.3 -6.4 -6.2 -5.7 -5.9 5.84
1H3,5 +3.0 +2.7 +2.4 +2.3 +2.4 1.99
1H4 -7.1 -7.3 -7.1 -6.6 -6.9 7.09

3 14N +12.4 +11.3 +11.8 +8.7 b 11.0 22
233S +2.6 +2.7 +3.0 +3.1 b 3.9
41H -0.5 -0.6 -0.6 -0.6 b 0.6

4 14N -8.4 +8.6 +8.1 +5.5 +6.4 6.70 23
1HR -12.4 -13.0 -12.8 -12.4 -12.2 11.75
1H3,5 +3.1 +2.7 +2.7 +2.4 +2.5 1.89
91Hγ +0.2 +0.3 +0.3 +0.3 +0.3 0.27

5 14N +9.9 +9.3 +9.2 +6.5 +7.4 8.80 24
1H2,2′,6,6′ -4.3 -4.4 -4.2 -3.9 -4.0 3.68
1H3,3′,5,5′ +2.3 +2.1 +2.0 +1.9 +2.0 1.52
1H4,4′ -4.8 -4.8 -4.8 -4.4 -4.6 4.28

6 14N +8.6 +8.1 +8.0 +5.5 +6.3 6.97 25
1H2,7 +1.6 +1.4 +1.3 +1.2 +1.3 0.89
1H3,6 -4.4 -4.4 -4.4 -4.0 -4.2 4.30
1H4,5 +1.2 +0.4 +0.4 +0.4 +0.1 0.14

7 14N +9.2 +8.4 +8.6 +5.9 +6.8 8.00 24
1H1,3,6,8 +2.2 +2.0 +1.9 +1.7 +1.8 1.28
1H2,7 -5.0 -5.0 -4.9 -4.6 -4.8 4.52
1H4,5 -4.4 -4.4 -4.3 -3.9 -4.1 3.67

8 14N +8.0 +7.3 +7.4 +5.1 +5.9 6.98 24
1H1,8 +1.6 +1.3 +1.2 +1.1 +1.1 0.76c

1H2,7 -4.5 -4.5 -4.4 -4.1 -4.3 4.12
1H3,6 +2.2 +1.9 +1.8 +1.6 +1.7 1.27c

1H4,5 -4.4 -4.3 -4.2 -3.9 -4.0 3.67
9 14N +8.8 +8.1 +8.2 +5.7 +6.6 8.03 26

1H1,9 -3.7 -3.7 -3.6 -3.3 -3.4 2.88
1H2,8 +1.5 +1.3 +1.2 +1.1 +1.1 0.97
1H3,7 -4.4 -4.4 -4.3 -4.0 -4.2 3.97
1H4,6 +1.6 +1.4 +1.3 +1.2 +1.3 0.65

10 14N +8.1 +7.5 +7.5 +5.3 b 7.05 27
1H1,9 -3.7 -3.7 -3.5 -3.2 b 2.85
1H2,4,6,8 +1.8 +1.5 +1.4 +1.3 b 0.95
1H3,7 -4.2 -4.3 -4.2 -3.9 b 3.66

11 14N -3.2 -2.4 -2.6 -2.3 -2.4 2.91 28
1H2,5 -13.5 -14.0 -13.8 -12.9 -13.4 13.26
1H3,4 -3.2 -3.4 -3.4 -3.2 -3.3 3.55

12 14N +6.3 +5.8 +5.9 +4.5 +5.0 6.25 29
1H2,6 -4.7 -5.1 -4.8 -4.5 -4.6 3.55
1H3,5 +0.4 +0.2 +0.1 +0.1 +0.1 0.8
31H� +5.2 +5.8 +5.1 +5.4 +5.7 5.55
31H�′ +0.9 +0.9 +0.9 +0.9 +1.0 0.8

13 14N +6.2 +5.6 +5.7 +4.3 +4.8 6.58 30
1H3 +1.8 +1.6 +1.5 +1.4 +1.4 0.94
1H4 -6.7 -7.2 -6.9 -6.4 -6.6 6.28
1H5 -2.5 -2.8 -2.8 -2.6 -2.7 2.54c

1H6 -1.4 -1.6 -1.5 -1.3 -1.4 1.40c

31H� +5.8 +6.3 +6.0 +5.9 +6.4 5.64
31H�′ +1.0 +0.5 +1.1 +1.1 +1.2 0.94

14 14N +11.5 +11.0 +11.8 +6.7 +8.6 10 31
41Ho,41Hm +0.3 +0.4 +0.4 +0.4 +0.4 0.37
21Hp +0.2 +0.2 +0.2 +0.2 +0.2 <0.2

15 14N1 +11.0 +10.7 +10.4 +7.8 +8.7 9.05 32
14N2 +4.1 +4.1 +3.9 +2.6 +3.1 4.28

16 14N1 +12.4 +12.1 +12.2 +10.5 +11.1 9.74 33
14N2 +7.4 +7.0 +6.9 +5.1 +5.7 7.95
214N′ -0.4 -0.3 -0.3 -0.4 -0.3 0.39 34
14N′′ -0.4 -0.3 -0.3 -0.4 -0.3 0.48
1H3′,5′ +1.4 +1.2 +1.2 +1.2 +1.2 1.06 35
41Ho -1.8 -1.7 -1.7 -1.6 -1.6 1.55
41Hm +1.0 +0.9 +0.9 +0.8 +0.9 0.73
21Hp -1.7 -1.7 -1.7 -1.6 -1.7 1.58

17 14N1 +14.0 +13.4 +13.6 +11.9 +12.4 11.1 36
14N2 +5.3 +5.0 +5.0 +3.5 +4.1 6.0
1H3′,5′ +1.5 +1.4 +1.4 +1.3 +1.4 1.17
1H1′′,8′′ -2.2 -2.2 -2.1 -2.0 -2.1 1.92
1H2′′,7′′ +0.8 +0.7 +0.7 +0.5 +0.7 0.53
1H3′′,6′′ -2.0 -2.1 -2.0 -1.9 -2.0 1.81
1H4′′,5′′ +0.7 +0.6 +0.5 +0.7 +0.5 0.41
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Table 1. Continued

aiso (theoretical) experimental

no. nuclei PBE0/ B3LYP/ B3LYP/ B3LYP/ B3LYP/ aiso ref
N07D 6-31G* N07D TZVP EPR-III

18 14N1,4 +6.5 +6.2 +6.1 +4.6 +5.1 5.7 37
14N2,3 +7.1 +6.8 +6.8 +5.5 +5.9 7.5
41Ho,21Hp -1.1 -1.1 -1.1 -1.0 -1.1 0.95
41Hm +0.7 +0.6 +0.6 +0.6 +0.6 0.5

19 14N1,4 +6.5 +6.2 +6.1 +4.5 +5.1 5.6 38
14N2,3 +7.1 +6.9 +7.0 +5.7 +6.1 7.5

20 14N1,3 +4.2 +4.1 +3.9 +2.8 +3.2 3.85 39
14N4,13 +5.7 +5.1 +5.2 +3.8 +4.4 7.7
1H5,7,10,12 -2.6 -2.7 -2.6 -2.4 -2.5 1.9
1H6,11 +0.9 +0.8 +0.7 +0.6 +0.7 0.4
1H8,9 +0.5 +0.4 +0.3 +0.3 +0.3 0.4

21 14N1,2,4,5 +5.8 +5.7 +5.5 +4.1 +4.6 6.0 40
1H3 +2.3 +2.0 +1.9 +1.7 +1.8 0.72 41
41Ho -1.4 -1.4 -1.4 -1.2 -1.3 1.10
41Hm +0.7 +0.6 +0.6 +0.5 +0.6 0.40
21Hp -1.5 -1.5 -1.5 -1.4 -1.5 1.16

22 14N1,2,4,5 +5.7 +5.5 +5.4 +4.0 +4.5 5.9 42
41Ho,21Hp -1.4 -1.5 -1.4 -1.1 -1.4 1.08 41
41Hm +0.7 +0.6 +0.6 +0.5 +0.6 0.40
21H� -0.1 -0.2 -0.1 -0.1 -0.1 0.08
91Hγ +0.1 +0.1 +0.1 +0.1 +0.1 0.11

23 14N1,2,4,5 +5.7 +5.6 +5.4 +4.0 +4.4 5.79 43
41Ho -1.4 -1.5 -1.4 -1.3 -1.4 1.12 44
41Hm +0.4 +0.7 +0.6 +0.6 +0.6 0.43
21Hp -1.6 -1.6 -1.6 -1.4 -1.5 1.20
21Ho′ +0.9 +0.8 +0.8 +0.7 +0.7 0.43
21Hm′ -0.4 -0.3 -0.3 -0.3 -0.3 0.16
1Hp′ +0.7 +0.6 +0.6 +0.5 +0.6 0.31
21H� +0.2 -0.01 +0.02 +0.05 +0.1 0.03

24 14N +7.3 +6.8 +7.0 +4.7 +5.6 9.75 45
1HR -11.9 -12.7 -13.0 -12.3 -12.6 12.75
21Ho,1Hp -3.3 -3.2 -3.3 -3.0 -3.2 3.00
21Hm +1.5 +1.4 +1.3 +1.2 +1.3 1.00

25 14N +7.8 +7.2 +7.3 +5.0 +5.9 10.15 45
1HR -12.2 -12.9 -13.3 -12.5 -12.9 13.75
21Ho -3.3 -3.3 -3.3 -3.0 -3.1 3.37
21Hm +1.4 +1.3 +1.2 +1.1 +1.2 1.00
31H� +0.4 +0.4 +0.5 +0.4 +0.5 0.50

26 14N +6.3 +5.9 +6.0 +3.9 +4.7 7.50 45
14N′ -0.8 -0.6 -0.7 -0.7 -0.7 1.85
1HR -11.0 -11.7 -12.0 -11.2 -11.6 10.10
21Ho -3.1 -3.1 -3.0 -2.8 -2.9 3.00
21Hm +1.5 +1.3 +1.3 +1.2 +1.3 0.85

27 14N +9.6 +9.1 +9.1 +6.6 +7.5 11.65 46
1HR -13.1 -13.9 -13.9 -13.5 -13.6 12.96
21Hm +1.2 +1.1 +1.1 +1.1 +1.1 1.03

28 14N +8.9 +7.8 +8.3 +5.8 +6.8 10.65 47
21Ho,1Hp -3.1 -3.1 -3.1 -2.8 -3.0 2.75
21Hm +1.5 +1.3 +1.2 +1.1 +1.2 1.01
31H� +7.9 +8.4 +8.5 +8.3 +9.0 9.69
13CR -6.0 -5.3 -5.8 -6.2 -6.0 6.0 48

29 14N +9.8 +8.8 +9.1 +6.7 +7.6 12.08 49
21Ho -2.9 -2.9 -2.9 -2.6 -2.7 2.09
21Hm +1.4 +1.2 +1.2 +1.1 +1.2 0.89
1Hp -2.9 -2.9 -2.9 -2.7 -2.8 2.29
91Hγ +0.03 +0.1 +0.1 +0.1 +0.1 0.09

30 14N +8.9 +7.7 +8.3 +5.8 +6.8 11.75 50
1H4,6 +1.6 +1.4 +1.3 +1.2 +1.3 1.00
1H5,7 -3.7 -3.8 -3.7 -3.4 -3.6 3.74
21H� +14.6 +15.0 +15.6 +14.9 +16.5 18.60

31 14N +8.4 +7.5 +7.8 +5.5 +6.4 9.66 51
41Ho,21Hp -2.1 -2.1 -2.1 -1.9 -2.0 1.83
41Hm +1.2 +1.1 +1.0 +1.0 +1.0 0.79

32 14N +6.0 +5.2 +5.6 +3.6 +4.4 6.65 52
1H1,3,6,8 -2.4 -2.4 -2.4 -2.3 -2.4 2.30
1H2,4,5,7 +0.8 +0.8 +0.7 +0.7 +0.7 0.55
17O -17.3 -15.3 -16.4 -10.2 -13.3 16.5

33 14N +7.9 +6.8 +7.3 +5.1 +6.0 8.75 52
1H1,3,6,8 +1.2 +1.1 +1.0 +0.9 +1.0 0.75
1H2,4,5,7 -2.6 -2.6 -2.6 -2.4 -2.5 2.30
17O -15.7 -14.9 -14.8 -9.4 -12.0 16.6

34 14N +6.3 +5.4 +5.8 +3.9 +4.6 6.89 24
1H1,3,6,8 +1.1 +1.0 +1.0 +0.9 +0.9 0.69
1H2,7 -2.2 -2.2 -2.2 -2.0 -2.1 2.03c

1H4,5 -2.3 -2.3 -2.3 -2.1 -2.2 2.11c

35 14N +8.1 +7.0 +7.4 +5.2 +6.1 9.50 52
1H1,3,7,9 -2.6 -2.7 -2.6 -2.4 -2.6 2.40
1H2,4,6,8 +0.9 +0.7 +0.7 +0.6 +0.6 0.50
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basis sets, while 6 d functions is mandatory for 6-31G* and
N07D basis sets. This result can be clearly observed for a
set of ten radicals in Table S2 in the SI, which lists the
differences between the aiso(14N) calculated with 5 and 6 d
functions. From these data, we can conclude that large basis
set are not affected by the number of d functions (maximum
differences of 0.3 G). However, for calculations with medium
size basis set, the average differences are around 2G.

In order to get a deeper insight into the results obtained
for the nitrogen coupling constants, we have considered in
the further analysis only the hfcc data obtained with the
N07D and 6-31G* basis sets, because the three combinations,
PBE0/N07D, B3LYP/6-31G*, and B3LYP/N07D compute
values of 14N hfccs more reliable than those obtained for
combinations with EPR-III and TZVP basis sets. However,
all the data obtained at the five calculation levels are
displayed in Figure S1 in the SI.

Figure 2 represents the calculated vs experimental aiso of
14N for the 38 species, at the three calculation levels above
indicated. Although this figure shows an important scattering
of the points, interesting conclusions can be achieved if the
set of 38 radicals is divided in two subsets, one of them

corresponding to the non nitroxide-type radicals, species
1-23, and the other one to the nitroxide-type radicals, species
24-38.

As can be observed in Figures 3 and 4, aiso(14N) of the
non nitroxide-type radical subset are predicted quite ac-
curately at the three calculation levels, whereas the 14N hfccs
obtained for nitroxide-type radicals are noteworthy under-
estimated. This result had been previously observed by other
authors and analyzed in the terms of the limits of the static
gas-phase DFT approaches.56 In the case of the nitroxide
radicals, there are two main critical geometric parameters,
namely the improper dihedral angle corresponding to the out-
of-plane motion of the NO moiety, and the N-O bond
length; a nearly planar environment of nitrogen leads to the
lack of any contribution of nitrogen s orbitals to the SOMO
with the consequent reduction of hfcc. The computation of
the magnetic parameter along the trajectory provided by
Molecular Dynamics (MD) runs may account for this effect.
Indeed, several works56-60 have shown that the computed
aiso(14N) for the planar structures predicted by static models
are lower than the values obtained for the averaged ones
obtained by molecular dynamic simulations, that are slightly
pyramidal. As a matter of fact, all of the nitroxide radicals
studied herein are predicted to have optimized geometries

Table 1. Continued

aiso (theoretical) experimental

no. nuclei PBE0/ B3LYP/ B3LYP/ B3LYP/ B3LYP/ aiso ref
N07D 6-31G* N07D TZVP EPR-III

36 14N +8.4 +7.3 +7.7 +5.6 b 9.01 53
1H1,3,7,9 -2.4 -2.5 -2.4 -2.2 b 2.20
1H2,8 +1.1 +0.9 +0.9 +0.8 b 0.63
1H4,6 +1.0 +0.8 +0.8 +0.7 b 0.50

37 14N +8.5 +7.6 +7.8 +5.6 +6.4 10.0 54
1HR +10.3 +10.9 +10.8 +10.3 +11.2 13.6
21Ho,1Hp -2.5 -2.5 -2.4 -2.2 -2.4 2.5
21Hm +1.2 +1.1 +1.0 +0.9 +1.0 0.9

38 14N +4.4 +4.5 +4.4 +2.5 +3.2 6.10 55
1HR -9.4 -10.4 -10.5 -9.9 -10.2 10.40

a All calculations have been carried out on the geometries optimized at B3LYP/6-31G* level of theory. b EPR-III basis set is not
parametrized for the sulfur nucleus. c The assignment of these experimental hfccs has been exchanged taking into account the present
theoretical calculations.

Figure 2. Plot of theoretical vs experimental aiso for 14N nuclei
of all studied radicals, calculated at B3LYP/6-31G*, B3LYP/
N07D, and PBE0/N07D levels of theory. Linear fits are
represented by solid lines.

Figure 3. Plot of theoretical vs experimental aiso for 14N nuclei
of radicals 1-23, calculated at B3LYP/6-31G*, B3LYP/N07D,
and PBE0/N07D levels of theory. Linear fits are represented
by solid lines.
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with almost planar environment of the nitrogen, which could
explain the eventual reduction of the hfcc.

For a better comparison of the general performance and
accuracy of the different computational schemes in the
prediction of hfccs, a regression analysis was carried out for
the five calculation levels included in Table 1. Different
parameters of the regression analysis: intercept, slope,
correlation coefficient (R2) of the least-squares fit, as well
as the number of data (N), range (minimum and maximum
absolute values), absolute error, maximum and mean percent
error (E) between calculated and experimental values, mean
absolute deviation (MAD), and the ratio range/MAD are
collected in Table 2. The analysis was made considering
aiso(14N) and the aiso(1H) together and separately, in all the
radicals and in the two subsets, non nitroxide and nitroxide-
type radicals, as indicate the sections shown in Table 2. The
number of data is high enough to infer general conclusions
as regards the prediction of this parameter on nitrogen
aromatic radicals.

The correlation coefficient (R2) for the five linear fits
considering all the nuclei in the 38 radicals (section i in Table
2) is higher than 0.87, being the values of the calculations
with B3LYP/TZVP and B3LYP/EPR-III the poorest. The
R2 values for the calculations with the other three levels of
theory (N07D and 6-31G* basis sets) are higher (>0.93) and
quite similar between each other. The same qualitative
tendency is observed when non nitroxide and nitroxide-type
radicals are analyzed separately (sections ii and iii in Table
2).

Analyzing the values calculated for aiso(14N), the lowest
R2 value corresponds to the fits where all radical are
considered together, 0.65 < R2 < 0.77. Correlation coefficient
becomes better when both, non nitroxide and nitroxide type
radical subsets, are considered separately, arising values
higher than 0.9 for almost all fittings (sections v and vi in
Table 2).

As expected, for aiso(1H) the correlation coefficient of the
five linear fits are very high (>0.96) without significant

differences between the two types of radicals, and the best
result always corresponds to the B3LYP/EPR-III combination
(sections vii-ix in Table 2).

The analysis of the slopes of the least-squares fits also
reveals the influence of the basis set and the type of radical,
especially in the calculation of the aiso(14N). The value of
the slopes in which all nuclei (1H and 14N) have been taken
in account are considerably far from the unit for TZVP and
EPR-III basis sets, obtaining similar slope values for fittings
with N07D and 6-31G* basis sets, and closer to the unit
value. According to this parameter, the agreement between
theoretical and experimental aiso is much better for non
nitroxide-type radicals than for nitroxide-type radicals, since
the slopes are much closer to the unity in the former.
Especially remarkable is the deviation of the values predicted
by the B3LYP/TZVP scheme, which slope for nitroxide-
type radicals is ca. 0.70.

Analyzing the values of the 14N hfccs, it is observed that
the slopes are scattered from 0.57 to 1.21 (sections v-vi in
Table 2) and these values depend strongly on the kind of
compounds considered, that is, all radicals together or any
of the subsets, nitroxide or non-nitroxide type radicals,
separately. So, the values of the slopes for the three lower-
cost levels of theory are noticeably higher than the unit for
radicals 1-23 and smaller than one for radicals 24-38,
resulting in slopes closer to the unity when all radicals are
analyzed as a whole. However, the bad values of the
correlation coefficient for these cases is a signal of the
inconsistency of these data, thus, both groups must to be
analyzed separately.

The value of the absolute error is not representative of
the accuracy of a computational level for the prediction of
hfccs since it depends on the range. Nevertheless, comparison
of the maximum absolute errors within each subset is
coherent. In that regard, we should stress that the values
corresponding to the calculations with TZVP and EPR-III
basis sets are higher than those with 6-31G* and N07D basis
sets, analyzing 1H and 14N together or separately, in the 38
radicals or in the two subsets, non-nitroxide and nitroxide
type radicals, except in the analysis of the 1H nucleus, for
which notable discrepancies do not become apparent among
the five combinations, corresponding lower values of the
maximum absolute errors to EPR-III calculations.

The parameter that can be considered as reference for the
relative comparison of the accuracy of the different meth-
odologies in the computation of hfccs respect to the corre-
sponding experimental values is the ratio between the range
and the mean absolute deviation (range/MAD). The most
remarkable result is the lower values of that ratio for the
calculations with the two larger basis sets in any subset where
14N hfccs have been included, sections i-vi in Table 2,
pointing out that B3LYP/TZVP and B3LYP/EPR-III levels
are not suitable for the prediction of aiso(14N) of aromatic
radicals in general. However, the opposite result is obtained
for the computation of the 1H coupling constant, as the range/
MAD values for the combinations with 6-31G* and N07D
basis sets are lower. In this case, the ratio for the PBE0/
N07D level is the poorest, being the B3LYP/N07D combina-
tion the best one of the three less computational demanding

Figure 4. Plot of theoretical vs experimental aiso for 14N nuclei
of radicals 24-38, calculated at B3LYP/6-31G*, B3LYP/N07D,
and PBE0/N07D levels of theory. Linear fits are represented
by solid lines.

The Challenge of Nitroxide Radicals J. Chem. Theory Comput., Vol. 7, No. 1, 2011 175



methods considered herein. Both the 6-31G* and the N07D
basis sets are equally appropriated for the theoretical evalu-
ation of 14N hfccs of aromatic non nitroxide type radicals,
but none of the five levels of theory are advisible for such a
calculation in nitroxide radicals, given that all the ratios are
very low. The thorough comparative analysis of all the
parameters in Table 2 enables us to infer that, on balance,
the most consistent results are provided by B3LYP/N07D

level of theory, since it leads to overall predictions of hfccs
of 14N and 1H nuclei of nitrogen aromatic radicals in a
reasonable reliability. Unfortunately, the calculation of
aiso(14N) in the case of nitroxide radicals is particularly
difficult, and all of the tested methodologies considerably
underestimate the constants. The lack of reliability of these
methods to compute nitrogen hfccs in nitroxide radicals has
been previously outlined. A huge quantity of work has been

Table 2. Regression Analysis for Predictions of Isotropic Hyperfine Coupling Constants (G) of the Studied Radicals

level of theorya intercept slope R2 N |aiso|min |aiso|max max. absolute error average E%b max E% MADc range/MAD

(i) all nuclei, all radicals
PBE0/N07D 0.5389 0.9071 0.9421 161 0.03 14.6 4.0 37 757 0.70 20.93
B3LYP/6-31G* 0.4400 0.8994 0.9306 161 0.01 15.3 4.1 27 186 0.71 21.14
B3LYP/N07D 0.3562 0.9181 0.9417 161 0.02 16.4 3.5 23 186 0.64 24.20
B3LYP/TZVP 0.3468 0.7547 0.8733 161 0.05 14.9 6.0 24 186 0.96 15.41
B3LYP/EPR-III 0.3398 0.8254 0.9120 151 0.1 16.5 5.0 23 233 0.79 20.82

(ii) all nuclei, radicals 1-23
PBE0/N07D 0.2702 1.0539 0.9838 105 0.1 14.0 2.9 43 757 0.61 22.94
B3LYP/6-31G* 0.1902 1.0429 0.9837 105 0.01 14.7 2.6 30 186 0.55 26.58
B3LYP/N07D 0.1279 1.0451 0.9848 105 0.02 14.5 2.5 25 186 0.51 28.50
B3LYP/TZVP 0.2311 0.8365 0.9577 105 0.05 14.1 3.9 24 186 0.69 20.40
B3LYP/EPR-III 0.2135 0.9099 0.9737 99 0.1 13.8 3.3 25 233 0.55 24.96

(iii) all nuclei, radicals 24-38
PBE0/N07D 0.5693 0.8029 0.9728 56 0.03 14.6 4.0 27 100 0.87 16.84
B3LYP/6-31G* 0.4369 0.7991 0.9426 56 0.1 15.0 4.1 23 68 1.00 14.87
B3LYP/N07D 0.3719 0.8284 0.9502 56 0.1 15.6 3.5 20 62 0.90 17.26
B3LYP/TZVP 0.2776 0.7010 0.8462 56 0.1 14.9 6.0 23 62 1.48 10.00
B3LYP/EPR-III 0.2743 0.7727 0.8913 52 0.1 16.5 5.0 20 62 1.24 13.20

(iv) 14N nucleus, all radicals
PBE0/N07D 0.3694 0.9362 0.7700 47 0.4 14.0 2.9 15 57 1.15 11.78
B3LYP/6-31G* 0.4328 0.8581 0.7110 47 0.3 13.4 4.1 18 68 1.32 9.94
B3LYP/N07D 0.2202 0.8997 0.7500 47 0.3 13.6 3.5 17 62 1.24 10.73
B3LYP/TZVP 0.1689 0.6482 0.6580 47 0.4 11.9 6.0 32 62 2.54 4.52
B3LYP/EPR-III 0.2010 0.7323 0.7140 44 0.3 12.4 5.0 24 62 1.91 6.35

(v) 14N nucleus, radicals 1-23
PBE0/N07D -0.8090 1.2101 0.9176 31 0.4 14.0 2.9 13 27 0.96 14.19
B3LYP/6-31G* -0.8441 1.1566 0.9021 31 0.3 13.4 2.6 13 38 0.81 16.11
B3LYP/N07D -1.0486 1.1880 0.9111 31 0.3 13.6 2.5 13 38 0.84 15.91
B3LYP/TZVP -0.8054 0.8786 0.8396 31 0.4 11.9 3.9 25 51 1.74 6.63
B3LYP/EPR-III -0.9376 0.9943 0.8798 29 0.3 12.4 3.3 18 43 1.16 10.44

(vi) 14N nucleus, radicals 24-38
PBE0/N07D -0.0806 0.8362 0.9364 16 0.8 9.8 2.9 19 57 1.53 5.87
B3LYP/6-31G* -0.1105 0.7536 0.9500 16 0.6 9.1 4.1 28 68 2.30 3.70
B3LYP/N07D -0.0399 0.7767 0.9487 16 0.7 9.1 3.5 24 62 2.02 4.16
B3LYP/TZVP -0.3337 0.5745 0.9328 16 0.7 6.7 6.0 47 62 4.11 1.46
B3LYP/EPR-III -0.2609 0.6516 0.9577 15 0.7 7.6 5.0 37 62 3.35 2.06

(vii) 1H nucleus, all radicals
PBE0/N07D 0.5179 0.8936 0.9683 114 0.03 14.6 4.0 47 757 0.51 28.73
B3LYP/6-31G* 0.4130 0.9538 0.9714 114 0.01 15.0 3.6 31 186 0.46 32.74
B3LYP/N07D 0.3441 0.9613 0.9763 114 0.02 15.6 3.0 26 186 0.40 39.13
B3LYP/TZVP 0.2768 0.9180 0.9771 114 0.05 14.9 3.7 20 186 0.31 47.47
B3LYP/EPR-III 0.2991 0.9533 0.9857 107 0.1 16.5 2.4 23 233 0.33 49.99

(viii) 1H nucleus, radicals 1-23
PBE0/N07D 0.3940 1.0049 0.9795 74 0.1 14.0 1.6 56 757 0.46 30.33
B3LYP/6-31G* 0.2458 1.0648 0.9862 74 0.01 14.7 1.8 37 186 0.44 33.12
B3LYP/N07D 0.2149 1.0440 0.9876 74 0.02 14.5 1.6 30 186 0.37 39.06
B3LYP/TZVP 0.1607 0.9960 0.9874 74 0.05 14.1 1.2 24 186 0.25 56.14
B3LYP/EPR-III 0.2188 1.0081 0.9898 70 0.1 13.8 1.1 27 233 0.30 46.31

(ix) 1H nucleus, radicals 24-38
PBE0/N07D 0.6020 0.8315 0.9767 40 0.03 14.6 4.0 30 100 0.60 24.37
B3LYP/6-31G* 0.4654 0.8914 0.9742 40 0.1 15.0 3.6 21 60 0.48 30.75
B3LYP/N07D 0.3935 0.9142 0.9750 40 0.1 15.6 3.0 18 60 0.45 34.52
B3LYP/TZVP 0.3104 0.8743 0.9765 40 0.1 14.9 3.7 13 41 0.43 34.54
B3LYP/EPR-III 0.3212 0.9229 0.9857 37 0.1 16.5 2.4 14 53 0.39 42.17

a All calculations have been carried out on the geometries optimized at B3LYP/6-31G* level of theory. b E% (percent error) ) |aiso(calc) -
aiso(exp)|/aiso(exp). c MAD(Mean Absolute Deviation) ) 1/N ∑ i

N |aiso(calc) - aiso(exp)|.
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devoted to the theoretical investigation in depth on these
species.56-70 All of them, with remarkable recognition to
the review by Improta and Barone,56 point out that quantum
mechanical methods that perform well for several classes of
organic free radicals, do not lead to very good results for
nitroxides, especially in the prediction of nitrogen isotropic
hyperfine coupling. The disappointing results have been
attributed to effects like vibrational averaging, conformational
flexibility, and spin delocalization, which could play a
significant role in determining this parameter, and are not
correctly modeled by a static gas-phase QM approach. The
accurate evaluation demands an integrated strategy able to
provide a reliable description of the radical electronic
structure. The first approach consisted of the correction of
the DFT aiso(14N) by means of a term computed with a post-
Hartree-Fock method, such as quadratic configuration
interaction (QCISD), coupled with purposely tailored basis
sets.56 Several studies have shown that this procedure leads
to very good values of the nitrogen hfccs in nitroxides62-65

but, unfortunately, it is not always applicable because of
time-consuming computational difficulties. This is especially
the case when both specific and bulk solvent effects, whose
inclusion has proven to be non-negligible,65,68 are properly
accounted. More recently, a combination of discrete QM-
continuum methods and MD simulations has been proposed
as a more feasible integrated strategy, in which the averaged
parameters are determined by running a molecular dynamics
simulation of the implicit and/or explicit solvated radical and
statistically sampling the resulting configurations.57-60,62-67,69

The deep analysis of the linear regression parameters
calculated herein for 14N nucleus of nitroxide species reveals
that good correlations are obtained for the five fits in spite
of the low range/MAD ratios. This implies that the theoretical
values are far from the experimental ones but the deviation
is always systematic, therefore, correctable as now it is
known. B3LYP/EPR-III combination has the best correlation
coefficient, but the value for the B3LYP/6-31G* fit is almost
the same with the advantage of being much less computa-
tional demand and applicable to much more atoms than the
former. Accordingly, we propose to use the B3LYP/6-31G*
level of theory for the calculation of aiso(14N) of nitroxide
radicals and to scale the values by means of the linear fit
obtained herein for such a calculation, that is:

where both aN are given in Gauss. Figure 5 shows, as a
noteworthy example, the result obtained by application of
this equation to the nitroxide radicals studied in this work.
The agreement between experimental data of nitrogen hfccs
and the scaled-B3LYP/6-31G* values is excellent, with R2

> 0.95, slope ≈ 1, intercept ≈ 0 and range/MAD ≈ 24.
Figure S2 in the SI displays the plots resulting from the
application of a similar scale procedure to the other four
levels of theory. All of them give very satisfactory results,
but the range/MAD of the scaled-B3LYP/6-31G* fit is the
highest, backing the selection of this computational protocol
for this purpose.

Comparison of Figures 4 and 5 clearly indicates the
improvement due to the addition of the corrective term

provided by the present work, allowing one to obtain reliable
values of the 14N hfccs of nitroxide species in a very simple
way and with low computational cost.

IV. Conclusions

An extensive study on the calculation of isotropic hyperfine
coupling constants of aromatic radicals containing 14N
nucleus has been carried out by comparing 165 experimental
hfccs to the corresponding data obtained from calculations
at five different levels of theory: PBE0/N07D, B3LYP/6-
31G*, B3LYP/N07D, B3LYP/TZVP, and B3LYP/EPR-III.

The results indicate that aiso of 1H are predicted in very
well agreement with the experimental values regardless of
the level of theory employed, whereas significant differences
are found in the case of the 14N nucleus, being the selection
of the basis set of fundamental importance, specially the
number of components of d functions. In that regard, 6-31G*
and N07D basis sets behave in a similar way in general,
and predict hyperfine constants of 14N closer to the experi-
mental values than EPR-III and TZVP basis sets.

The thorough comparison of the results by a regression
analysis points out that, on balance, the most consistent
results are provided by the B3LYP/N07D level of theory,
since it leads to overall predictions of hfccs of 14N and 1H
nuclei of nitrogen aromatic radicals in a reasonable reliability.

A different tendency is observed for the calculated aiso(14N)
of non nitroxide and nitroxide type radicals. The first group
is predicted quite accurately, whereas the values of the second
type are considerably underestimated. As is widely known,
the calculation of aiso(14N) of nitroxide radicals is of
particular complexity, and all the levels of theory investigated
herein underestimate them in a great quantity. The N07D
basis set combined with the PBE0 functional has shown to
provide the most reliable values, albeit still important
discrepancies are obtained.

Finally, a simple empirical method to obtain accurate
values of the aiso(14N) of nitroxide type radicals is provided,
avoiding integrated methodologies which complexity and
high computational cost restrict its application. This alterna-

aN(nitroxide) ) (aN
B3LYP/6-31G* + 0.1105)/0.7536 (1)

Figure 5. Plot of theoretical vs experimental aiso for 14N nuclei
of radicals 24-38, calculated by means of eq (1). The linear
fit is represented by a solid line.
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tive consists on properly scaling the values obtained at
B3LYP/6-31G* level of theory by means of the data provided
by the linear fit corresponding to such a calculation.
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Abstract: We compute oscillator strengths with the ONIOM (Our own N-layer Integrated
molecular Orbital molecular Mechanics) hybrid method between ground and valence excited
states and compare the results with the high level of theory equation of motion coupled cluster
singles and doubles (EOM-CCSD). This work follows our previous studies in which we validated
the ability of ONIOM to compute accurate transition energies compared to EOM-CCSD. We
test various levels of theory and molecular systems, as well as the effect of the link atom bond
length. Our results show that oscillator strengths can be accurately computed with ONIOM,
provided that a sensible choice of the partitioning and of the low level method is made. Being
able to calculate both the transition energy and the oscillator strength, ONIOM represents a
promising approach to completely characterize valence excited states of molecules that are too
large to be studied with a conventional high-accuracy method.

1. Introduction

Methods that combine two (or more) levels of theory are
now widely used to study ground state phenomena and
processes of large systems.1 Such “hybrid methods” divide
the system into a region of major interest treated at a high
level of theory, while the rest (substituent effect) is treated
at a lower and less computationally demanding level. Most
of these methods combine a quantum mechanical level with
a molecular mechanical level, QM/MM,1-4 and the energy
is expressed as a summation. On the other hand, the ONIOM
(Our own N-layer Integrated molecular Orbital molecular
Mechanics)5-15 energy is formulated as extrapolation. There-
fore, it can easily combine more than two computational
levels as well as integrate two or more different quantum
mechanical levels, QM/QM. In ONIOM, open valencies in
the model system generated from cutting covalent bonding
between regions are saturated with link atoms (typically
hydrogens). A link atom is placed in the same direction of
the atom it replaces, with a distance scaled by a factor

proportional to the ratio between the original bond length
and the typical bond distance of the atoms involved.

While the use of hybrid methods for ground state problems
has been well documented, their use in excited state
calculation is still limited. This is especially so when two
QM levels of theory are combined.1 In two recent studies,16,17

we investigated the ability of the ONIOM hybrid method to
reproduce equation of motion coupled cluster singles and
doubles (EOM-CCSD)18-24 vertical excitation energies. The
EOM-CCSD results on the entire system (the target) were
used as a reference, and the performance of ONIOM was
compared either to conventional calculations with a lower
level of theory on the entire system or to EOM-CCSD only
on the core region. We analyzed the effect of the partitioning,
of the choice of the low level methods and basis sets, and
of the link atom bond length. We found that, provided certain
guidelines for the partitioning15,17 are followed, ONIOM is
able to accurately approximate EOM-CCSD while providing
a drastic reduction in computational time. ONIOM with time-
dependent density functional theory (TDDFT) as the low
level provided the best overall performance. Also, the exact
value of the link atom bond length did not significantly
influence the ONIOM results, analogous to what was found
for ground state calculations;25 hence, the same definition
for the link atom bond length used for the ground state can
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be retained for excited state calculations. Finally, we also
proposed several new guidelines for using ONIOM in excited
states studies.17

Although the energy is the primary quantity that needs to
be considered to assess the performance of ONIOM, transi-
tion properties are also important for the investigation of
electronic excitations. In this paper, we focus on the oscillator
strength since this quantity is directly related to the intensity
of a transition. Our comparison will be with this property
computed for the entire system at the high level of theory,
because this is the reference value that we aim to reproduce
(target). We consider two molecular systems from our
previous works and two new systems with large oscillator
strengths. For this paper, as in our previous studies, we limit
our investigation to valence states. The model system for
each molecule is chosen according to the ONIOM guidelines
for partitioning15 and based on the results of our previous
studies.16,17 For this model system, the ONIOM high level
calculation is performed at the target level of theory while
various levels of theory are tested for the ONIOM low level
calculations. Only QM/QM combinations are considered in
this work, as in refs 16 and 17, since a MM method in the
low level does not directly contribute to the excited state
calculation.

The results in this paper show that transition properties
can be accurately computed with ONIOM, and that the same
considerations employed when computing the transition
energy apply to the oscillator strength.

The paper is organized as follows. The formulas for the
calculation of ONIOM transition energies and properties are
reported in section 2. Computational details are given in
section 3. The results of the calculations are presented in
section 4, while section 5 contains a discussion of these
results and concluding remarks.

2. Theory

The ONIOM energy for a two-layer system with mechanical
embedding is written as an extrapolation:

where real and model refer to the full system and to the
core region, respectively. The transition energy (∆E) in the

ONIOM scheme can be expressed as the difference of the
ONIOM energies of the kth and the ground states:

The ONIOM oscillator strength, f ONIOM, is calculated as

where DONIOM is the ONIOM dipole strength defined as

and (µi
ONIOM)0k are the components of the integrated ONIOM

transition dipole:

where µm/r
h/l are the dipole integrals of the various subcalcu-

lations (h/l indicates the high or low level of theory, and
m/r indicates the model or real system). A similar expression
is used to compute (µi

ONIOM)k0. In order to compute transition
properties, integrated ONIOM transition densities must be
defined, F0k

ONIOM and Fk0
ONIOM. These are shown in Figure 1,

where the ground to excited state (F0k
ONIOM) and the excited

to ground state (Fk0
ONIOM) densities are represented in terms

of the transition densities of the subcalculations. Two
different integrated transition density matrices are necessary
when a method like EOM-CCSD is used since this method
has a non-Hermitian Hamiltonian.20 However, F0k ) Fk0 for
methods like configuration interaction singles (CIS), time-
dependent Hartree-Fock (TDHF), and TDDFT.

Alternatively, a simpler formula may be used to compute
f ONIOM by directly integrating the oscillator strengths of the
subcalculations:

Figure 1. Integrated ONIOM transition densities.

EONIOM ) Emodel
high + Ereal

low - Emodel
low (1)

∆EONIOM ) Ek,ONIOM - EONIOM

) (Emodel
k,high + Ereal

k,low - Emodel
k,low ) - (Emodel

high + Ereal
low - Emodel

low )

) (Emodel
k,high - Emodel

high ) + (Ereal
k,low - Ereal

low) - (Emodel
k,low - Emodel

low )

) ∆Emodel
high + ∆Ereal

low - ∆Emodel
low

(2)

fONIOM ) 2
3

∆EONIOMDONIOM (3)

DONIOM ) ∑
i

(µi
ONIOM)0k × (µi

ONIOM)k0 i ) x, y, z (4)

(µi
ONIOM)0k ) Tr[(Fm

h )0k(µm
h )i] + Tr[(Fr

l)0k(µr
l)i] -

Tr[(Fm
l )0k(µm

l )i] (5)

f̃ ONIOM ) fmodel
high + f real

low - fmodel
low (6)

Oscillator Strengths in ONIOM Calculations J. Chem. Theory Comput., Vol. 7, No. 1, 2011 181



which does not require the integration of the transition dipole.
f̃ ONIOM is an approximation of f ONIOM in eq 3, as it is easy
to verify that f ONIOM ) f̃ ONIOM + cross terms. However,
since the subcalculation transition dipoles are needed for both
f ONIOM and f̃ ONIOM, there is not a particular computational
advantage in using the latter. Therefore, we will not further
consider f̃ ONIOM.

3. Computational Details

The ground state geometries of the entire molecules are
optimized at the B3LYP level with the 6-311+G** basis
set and subsequently used for all the excited state calcula-
tions. The target oscillator strength and transition energy (i.e.,
that we want to reproduce with ONIOM), f target and ∆Etarget,
respectively, are computed at the EOM-CCSD/6-311+G**
level of theory on the entire (real) system. For ONIOM, only
one level of theory is used in the high level calculation on
the model system: EOM-CCSD/6-311+G** (i.e., the same
as the target). For the low level calculations (on the model
and real systems), we test CIS, TDHF, and TDDFT (with
the B3LYP functional26-28) with the 6-311+G** basis set.
We also consider EOM-CCSD/6-31+G* as a low level
method. In the following, we refer to the 6-311+G** and
6-31+G* basis sets as “L” and “M”, respectively, for
consistency with refs 16 and 17. For the ketene, we also
test three functionals other than B3LYP, namely, CAM-
B3LYP,29,30 BLYP,31,32 and LC-BLYP.31-34 All of the
calculations are performed with the Gaussian 09 suite of
programs.35 In summary, we consider the following ONIOM
combinations:

• ONIOM(EOM/L:EOM/M)
• ONIOM(EOM/L:TDDFT/L)
• ONIOM(EOM/L:TDHF/L)
• ONIOM(EOM/L:CIS/L)

In the next section, these ONIOM combinations are com-
pared with the conventional calculations at the corresponding
low level of theory on the entire system (f real

low and ∆Ereal
low),

and with the high level of theory on the model system (fmodel
high

and ∆Emodel
high ). In fact, f real

low and fmodel
high can be considered as

approximations of f target when the latter is computationally
too expensive to evaluate (equivalently ∆Ereal

low and ∆Emodel
high

for ∆Etarget). Therefore, it is interesting to test ONIOM versus
these approximated conventional calculations.

4. Results

The ability of ONIOM to reproduce the target oscillator
strengths is tested on four molecular systems, shown in
Figures 2-4 with their respective model systems. Although

the number of test cases in this work is limited, they are
analyzed in great detail, and a large variety of possible
sources of errors is considered. Therefore, even though the
results presented in this section are preliminary, they provide
useful insight on the ONIOM accuracy for this property. The
first two systems, the substituted cyclopropenes, appeared
in our previous works where we analyzed the dependence
of ∆EONIOM on the choice of the model system, the low level
of theory, and the link atom bond length.16,17 These systems
represent good candidates to study the ONIOM performance
on transition properties because we already know how the
various choices of the subcalculations influence the transition
energy. For this reason, we only consider the model systems
that performed best in refs 16 and 17, which indeed follow
the ONIOM guidelines for the partitioning.15 We consider
the second transition for both systems since it has a larger
oscillator strength. Unfortunately, we could not select other
systems from our previous studies because f target was
negligible and thus not suitable for this investigation. The
two new systems chosen for this study are 3,3,3-trifluoro-
propanal and 4-fluorobut-1-en-1-one (in the following, we
will refer to these systems as the “aldehyde” and the
“ketene”, respectively), for which we examine two bright
states. Both molecules are forced in the Cs geometry. All of
the transitions considered are π f π*. In addition to the
oscillator strength, we also discuss the ONIOM performance
on ∆E in order to understand how their relative performances
are related.

For the cyclopropenes, the transition energies are reported
in Table 1 and the oscillator strengths in Table 2. An
interesting aspect of these two molecules is that the same
model system can be used for both (albeit with some
geometrical differences due to the different real systems’
geometries). As discussed in ref 16, ∆EONIOM is a very good
estimates of ∆Etarget for both molecules, especially with
EOM/M and TDDFT/L in the low level. Although ∆Emodel

high

for the first system is very close to the target, ONIOM(EOM/
L:EOM/M) is even closer, while the error with ONIOM-
(EOM/L:TDDFT/L) is below 0.1 eV. For the second system,

Figure 2. Structures of 1-trifluoro-methyl-cyclopropene (a),
3-trifluoro-methyl-cyclopropene (b), and the model system (c).

Figure 3. Structures of 3,3,3-trifluoropropanal (a) and the
model system (b).

Figure 4. Structures of 4-fluorobut-1-en-1-one (a) and the
model system (b).
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ONIOM provides a large improvement over ∆Emodel
high and

∆Ereal
low for all of the low level methods. Table 2 shows that

the same good performance is shared by the oscillator
strength calculations. In this case, the first molecule shows
the larger improvement by using ONIOM instead of the
conventional calculations (fmodel

high and f real
low) to approximate the

target, except for EOM/M where f real
low is very close to f target;

nevertheless, the ONIOM results are very close to the target
even for EOM/M. For the second molecule, fmodel

high is already
very close to f target, but the ONIOM results also have very
small errors. Additionally, ONIOM always improves over
f real

low.
The results for the aldehyde are reported in Table 3. The

performances of ONIOM(EOM/L:EOM/M) and ONIOM-
(EOM/L:TDDFT/L) on the transition energy are very good.
The former maintains an already small ∆Ereal

low error, and the
latter improves on both ∆Emodel

high and ∆Ereal
low. This is not the

case with CIS/L and TDHF/L in the low level. For these
two methods, the improvement over ∆Emodel

high is in the right
direction, but it is not enough to provide a good estimate of
∆Etarget. The reason is probably the lack of correlation effects,
which are important for obtaining a reliable description of
the substituent effect. f target is well reproduced with ONIOM
and TDDFT/L, TDHF/L, and CIS/L as low methods. The
poor performance of ONIOM(EOM/L:EOM/M) for the

oscillator strength can be explained by the inadequacy of
the “M” basis set for the model system calculation. Indeed,
repeating the calculation at the CIS level with this basis set
(reported in Table 4), we find that the trends EOM/L f
EOM/M and CIS/Lf CIS/M are similar. Although f ONIOM

with EOM/M in the low level is not unreasonable, it certainly
increases the error compared to fmodel

high and f real
low.

The last system is a ketene for which we consider a very
bright transition, f target ) 0.7675. The results are reported
in Table 5. ONIOM improves the agreement with ∆Etarget

with all the low level methods compared to ∆Emodel
high and ∆Ereal

low

(for EOM/M, the improvement is small, as ∆Ereal
low is already

Table 1. Transition Energies (eV) for the Substituted Cyclopropenes

1-trifluoro-methyl-cyclopropene 3-trifluoro-methyl-cyclopropene

X ∆Ereal
a ∆Emodel

b ∆EONIOM,c ∆Ereal
a ∆Emodel

b ∆EONIOM,c

EOM/L 7.09d 7.10e 7.48d 7.04e

EOM/M 7.15 7.15 7.09 7.57 7.10 7.52
TDDFT/L 6.19 6.27 7.02 6.63 6.20 7.48
TDHF/L 6.67 6.58 7.18 6.98 6.57 7.46
CIS/L 6.99 6.86 7.22 7.29 6.85 7.49

a Conventional calculation on the real system. b Conventional calculation on the model system. c ONIOM(EOM/L:X), where X is the level
of theory specified in the first column. d ∆Etarget: EOM/L level on the real system. e ∆Emodel

high : EOM/L level on the model system.

Table 2. Oscillator Strengths for the Substituted Cyclopropenes

1-trifluoro-methyl-cyclopropene 3-trifluoro-methyl-cyclopropene

X freal
a fmodel

b f ONIOM,c freal
a fmodel

b f ONIOM,c

EOM/L 0.1128d 0.0792e 0.0810d 0.0783e

EOM/M 0.1124 0.0794 0.1120 0.0800 0.0784 0.0799
TDDFT/L 0.1020 0.0702 0.1155 0.0671 0.0677 0.0770
TDHF/L 0.1474 0.1202 0.1022 0.1209 0.1205 0.0772
CIS/L 0.1748 0.1493 0.0977 0.1537 0.1500 0.0789

a Conventional calculation on the real system. b Conventional calculation on the model system. c ONIOM(EOM/L:X), where X is the level
of theory specified in the first column. d f target: EOM/L level on the real system. e f model

high : EOM/L level on the model system.

Table 3. Transition Energies (eV) and Oscillator Strengths
for the Aldehyde

X ∆Ereal
a ∆Emodel

b ∆EONIOM,c freal
a fmodel

b f ONIOM,c

EOM/L 9.36d 10.00e 0.1423f 0.1577g

EOM/M 9.41 10.13 9.28 0.1369 0.1854 0.1161
TDDFT/L 8.60 9.50 9.10 0.1171 0.1277 0.1416
TDHF/L 9.28 9.38 9.90 0.2391 0.2422 0.1582
CIS/L 9.66 9.74 9.92 0.2628 0.2824 0.1439

a Conventional calculation on the real system. b Conventional
calculation on the model system. c ONIOM(EOM/L:X), where X is
the level of theory specified in the first column. d ∆Etarget: EOM/L
level on the real system. e ∆Emodel

high : EOM/L level on the model
system. f f target: EOM/L level on the real system. g f model

high : EOM/L
level on the model system.

Table 4. Basis Set Dependence of the Transition Energies
(eV) and Oscillator Strengths for the Aldehyde

X ∆Ereal
a ∆Emodel

b ∆EONIOM,c freal
a fmodel

b f ONIOM,c

EOM/L 9.36d 10.00e 0.1423f 0.1577g

EOM/M 9.41 10.13 9.28 0.1369 0.1854 0.1161
CIS/L 9.66 9.74 9.92 0.2628 0.2824 0.1439
CIS/M 9.71 9.84 9.87 0.2623 0.3097 0.1253

a Conventional calculation on the real system. b Conventional
calculation on the model system. c ONIOM(EOM/L:X), where X is
the level of theory specified in the first column. d ∆Etarget: EOM/L
level on the real system. e ∆Emodel

high : EOM/L level on the model
system. f f target: EOM/L level on the real system. g f model

high : EOM/L
level on the model system.

Table 5. Transition Energies (eV) and Oscillator Strengths
for the Ketene

X ∆Ereal
a ∆Emodel

b ∆EONIOM,c freal
a fmodel

b f ONIOM,c

EOM/L 10.09d 10.74e 0.7675f 0.9801g

EOM/M 10.16 10.82 10.07 0.6392 0.9825 0.6355
TDDFT/L 9.31 10.37 9.67 0.3473 0.8211 0.4385
TDHF/L 10.50 10.81 10.42 0.8353 0.7804 1.0336
CIS/L 10.87 11.18 10.42 0.5967 0.9768 0.6034

a Conventional calculation on the real system. b Conventional
calculation on the model system. c ONIOM(EOM/L:X), where X is
the level of theory specified in the first column. d ∆Etarget: EOM/L
level on the real system. e ∆Emodel

high : EOM/L level on the model
system. f f target: EOM/L level on the real system. g f model

high : EOM/L
level on the model system.
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very close to ∆Etarget). For the oscillator strength, the
ONIOM performance varies depending on the low level
method. f ONIOM with EOM/M is very close to f target.
ONIOM(EOM/L:TDDFT/L) and ONIOM(EOM/L:CIS/L)
move fmodel

high and f real
low in the right direction; although for

TDDFT/L, fmodel
high is closer to the target than f ONIOM.

ONIOM(EOM/L:TDHF/L) is very close to fmodel
high , but the

correction goes in the wrong direction. The poor performance
of TDDFT/L as a low level in this case, contrary to the
previous ones, is related to the choice of the particular
functional: B3LYP does not satisfactorily reproduce the long-
range effect of the substituent group. This can be recovered
by employing a functional that better describes this effect,
such as CAM-B3LYP. ONIOM(EOM/L:CAM-B3LYP/L)
provides results in very good agreement with the target
calculation, both for the energy and the oscillator strength,
see Table 6. The lack of a correct description of the long-
range effect in B3LYP as a cause of its poor performance is
confirmed by considering the results obtained with the BLYP
functional with and without long-range corrections, also in

Table 6. Although BLYP is not a good choice for computing
excited state energy and properties with ONIOM and in
conventional calculations,36 the trend between B3LYP and
BLYP when long-range corrections are introduced is similar.
This problem could be partly overcome by considering a
much larger basis set, and in Table 7 we report the data
computed with the daug-cc-pVTZ basis, which has a double
set of diffuse functions. This basis set is too large for
performing the calculation on the entire system at the EOM-
CCSD level, but the results in Table 7 show that the
difference between B3LYP and CAM-B3LYP (and BLYP
and LC-BLYP) is greatly reduced.

Finally, we examine the effect of the link atom bond length
(rLA) on the oscillator strength by computing it when moving
away from the standard rLA value (rLA

0 ) in a range of (0.3
Å. We only consider one low level method for the sake of
clarity (we choose TDDFT since it provides on average the
best performance). Figure 5 reports the variation of f ONIOM

as well as fmodel
high and fmodel

low as a function of the rLA shift for
the substituted cyclopropenes: rLA

0 ) 1.067 Å and ) 1.092
Å, respectively. The figures show that ONIOM only has
a small dependence on rLA for the oscillator strength. In
Figure 5a, the variation is also small for the subcalcula-
tions (in the range of (0.1 Å), whereas in Figure 5b, the
model system calculations have the same dependence on
rLA. Thus, f ONIOM benefits from the error cancellation.
These results are similar to the behavior of ∆EONIOM for
the same systems (compare with Figures 19 and 20 in ref
17). For the aldehyde, we consider the shift of the
transition energy (∆Emodel

high , ∆Emodel
low and ∆EONIOM) with

∆rLA with respect to rLA
0 , and the dependence of the

oscillator strength (f model
high , f model

low , and f ONIOM) on ∆rLA,

Table 6. Functional Dependence of the Transition Energies (eV) and Oscillator Strengths for the Ketene

X ∆Ereal
a ∆Emodel

b ∆EONIOM,c freal
a fmodel

b f ONIOM,c

EOM/L 10.09d 10.74e 0.7675f 0.9801g

B3LYP/L 9.31 10.37 9.67 0.3473 0.8211 0.4385
CAM-B3LYP/L 9.75 10.49 9.99 0.6355 0.8399 0.7448
BLYP/L 9.80 10.09 10.45 0.1634 0.7500 0.2581
LC-BLYP/L 10.18 10.67 10.25 0.8521 0.8784 0.9480

a Conventional calculation on the real system. b Conventional calculation on the model system. c ONIOM(EOM/L:X), where X is the level
of theory specified in the first column. d ∆Etarget: EOM/L level on the real system. e ∆Emodel

high : EOM/L level on the model system. f f target:
EOM/L level on the real system. g f model

high : EOM/L level on the model system.

Table 7. Transition Energies (eV) and Oscillator Strengths
for the Ketene with the daug-cc-pVTZ Basis Set

∆Ereal
a ∆Emodel

b freal
a fmodel

b

EOM 10.48 0.7088
B3LYP 9.17 10.25 0.3246 0.4940
TDHF 10.35 10.64 0.5330 0.5803
CIS 10.69 10.91 0.6253 0.6669
CAM-B3LYP 9.55 10.18 0.3101 0.5930
BLYP 9.67 10.75 0.1607 0.4010
LC-BLYP 10.07 10.52 0.6095 0.7261

a Conventional calculation on the real system. b Conventional
calculation on the model system.

Figure 5. fmodel
high , fmodel

low , and f ONIOM dependence on ∆rLA (Å) for the substituted cyclopropenes.
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shown in Figure 6. The precise value of rLA (rLA
0 ) 1.105

Å; the other C-H bond is 1.107 Å) has a small effect on
the ONIOM transition properties since the trend is the
same for the high and low level methods, especially in
the range (0.1 Å. Figure 7 reports the transition energy
shift and the variation of the oscillator strength for the
ketene. CAM-B3LYP is used in the low level, as this
functional showed the best performance for this system.
f model

high and f model
low obtained with rLA distorted from rLA

0 (rLA
0

) 1.102 Å) decrease considerably because of the mixing
with other excited states of the same symmetry and close
in energy. The geometry at rLA

0 is very close to the C2V

symmetry (the other C-H bond is 1.085 Å). The link atom
slightly distorts the more symmetric geometry (the point
group of the model system is Cs as in the real system) in
order to represent the presence of the substituent group.
However, further distortion produces the mixing of various
states that is responsible for the underestimated values of
f model

high and f model
low away form rLA

0 . The values of f model
high and

f model
low at the optimized C2V geometry are 1.0038 and 0.8679,

respectively, which are indeed very close to those reported
in Table 6. Nonetheless, the dependence on rLA is small
in the ONIOM calculation.

5. Discussion and Conclusion

In this paper, we report calculations of oscillator strength
with the ONIOM hybrid method. We consider four electronic
excitations to valence states and compare the ONIOM results
with the target calculation (EOM-CCSD on the entire
system). We test various low levels of theory and check the
dependence of the ONIOM results on the choice of the link
atom bond length. We only define model systems that follow
the ONIOM guidelines for partitioning.15

The conclusions in this paper closely follow our findings
for the transition energy.16,17 We note that it is important to
verify that the same states from the subcalculations are
integrated. The low level method that gives the best balance
between accuracy and computational savings is again TD-
DFT, although it is important to choose the right functional
for a particular transition as shown by the ketene case. CIS
and TDHF often provide poor results that make the improve-
ment over fmodel

high not impressive, although an improvement
over f real

low is obtained almost always. EOM-CCSD as a low
level with a smaller basis set than the target usually provides
the results closest to the target, but the f real

low (and ∆Ereal
low)

calculation can be very demanding. Additionally, we find a
case (the aldehyde) where the basis set for EOM-CCSD in

Figure 6. (a) ∆Emodel
high , ∆Emodel

low , and ∆EONIOM shift from rLA
0 . (b) fmodel

high , fmodel
low , and f ONIOM dependence on ∆rLA (Å) for the aldehyde.

Figure 7. (a) ∆Emodel
high , ∆Emodel

low , and ∆EONIOM shift from rLA
0 . (b) fmodel

high , fmodel
low , and f ONIOM dependence on ∆rLA (Å) for the ketene.

TDDFT in this case refers to the CAM-B3LYP functional.
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the low level calculation is not adequate and provides poor
results. Therefore, the choice of the basis set is very
important.

Relative timings are not reported in this paper, and we
refer to ref 16 for a more detailed discussion. We only point
out that the bottleneck calculation is ∆Emodel

high for the systems
presented here when a method such as TDDFT is used in
the low level. Since a method like EOM-CCSD scales as
O(N6), where N is the number of basis functions, it is evident
that a hybrid method such as ONIOM can greatly reduce
the computational effort by performing the expensive
calculation only on the model system.

We confirmed that the definition of the link atom bond
length (that follows the ground state formula) is appropriate
also for this transition property. In fact, the dependence of
f ONIOM (as well as of ∆EONIOM) on the exact value of rLA

is small due either to a cancellation of errors between the
model systems subcalculations or to a small dependence of
the individual subcalculations.

Although the guidelines reported in refs 16 and 17 for the
transition energy also hold for the oscillator strength, the
latter is a much more sensitive quantity. This is shown in
Figure 8, which reports the relative errors of ∆EONIOM and
DONIOM as a function of the relative errors of f ONIOM for
all the low level methods. These graphs show that the relative
errors for the oscillator strength are larger than those of the
transition energy (the graphs also include the low level
methods that do not perform very well as discussed in the
previous section). Additionally, there is a direct relationship
between the dipole and oscillator strengths errors. This is
not surprising, as DONIOM is a quadratic quantity that depends
on the independent extrapolation of the various components
of the transition dipoles, eqs 4 and 5.

Our preliminary results therefore show that, although
oscillator strengths are more sensitive than transition energies,
they can be accurately computed with ONIOM provided that
a sensible choice of the partitioning and of the low level
method is made.

Supporting Information Available: Geometries of the
aldehyde and the ketene and of their respective model

systems (for the geometries of the cyclopropenes, we refer
to the supporting material of ref 16). This material is
available free of charge via the Internet at http://pubs.acs.org.
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Abstract: The conformational properties of a finite length polyethylene chain were explored over a
wide range of temperatures using a replica exchange molecular dynamics simulation providing high quality
simulation data representative for the equilibrium behavior of the chain molecule. The radial distribution
function (RDF) and the structure factor S(q) of the chain as a function of temperature are analyzed in
detail. The different characteristic peaks in the RDF and S(q) were assigned to specific distances in the
chain and structural changes occurring with the temperature. In S(q), a peak characteristic for the order
in the solid state was found and used to determine the equilibrium melting temperature. A detailed scaling
analysis of the structure factor covering the full q range was performed according to the work of
Hammouda. In the Θ region, a quantitative analysis of the full structure factor was done using the
equivalent Kuhn chain, which enabled us to assign the Θ region of our chain and to demonstrate, in our
particular case, the failure of the Gaussian chain approach. The chain conformational properties at the
equilibrium melting temperature are discussed using conformational distribution functions, using the largest
principal component of the radius of gyration and shape parameters as order parameters. We demonstrate
that for the system studied here, the Landau free energy expression based on this conformational
distribution information leads to erroneous conclusions concerning the thermodynamic transition behavior.
Finally, we focus on the instantaneous conformational properties at the equilibrium melting temperature
and give a detailed analysis of the conformational shapes using different shape parameters and a
simulation snapshot. We show that the chain does not only take the lamellar rod-like and globular
conformational shapes, typical of the solid and liquid states, but can also explore many other
conformational states, including the toroidal conformational state. It is the first demonstration that a flexible
molecule like PE can also take a toroidal conformational state, which is normally linked to stiffer chains.

Introduction
The single chain behavior is not only elementary in
understanding the properties of polymers in the condensed

state but also has immediate relevance in nanoscience,
nanotechnology, and experimental techniques, such as AFM,
which allows for the direct study of single chains. The study
of the conformational properties of a single chain by
experimentation,2-19 theory,20-23 and simulation24-39 has
a long-standing history in fundamental polymer science. It
is well established that a polymer chain in dilute solution
can be present as an expanded coil, an ideal coil, or a
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collapsed globule depending on the temperature, solvent
quality, and pressure.24,40,2,41-43 Moreover, the expanded
coil, the ideal coil, and the globule are not the only possible
conformational states, and depending on the details of the
intrachain and chain-solvent interactions, other conforma-
tional states may exist.44-47 For instance, for stereo-regular
polymers, the additional possibility exists for it to occur in
the crystalline state, and the single chain can attain a folded
lamellar crystalline conformational state.

Simulation and theory have contributed a great deal to the
understanding of the existence of different single chain
conformational states and transitions between them.24,48,49

Initially, attention was given to the coil-globule transition.50,51

More recently, the low temperature behavior received
increased attention in computer simulation studies, and e.g.,
liquid-solid and solid-solid transitions have been ob-
served.52-56 The transitions between the coil, globule, and
folded chain states are affected by both the environmental
variables and the intrinsic character of the polymer chain.
For instance, the occurrence of the globular state upon going
from the expanded coil to the chain folded crystal and the
length/diameter aspect ratio of the chain folded crystal
sensitively depends on the chain stiffness44,57,58 and the chain
length.48

Unfortunately, computer simulation studies of the dense
chain conformations at low temperatures are far from easy.
Different instantaneous chain folded conformational states
are very likely separated by high free energy barriers, making
it very difficult to realize transitions from one state to the
other in the time of a single Molecular Dynamics or
conventional Monte Carlo simulation run. Therefore, the
simulation does not necessarily represent a proper ensemble
average over all relevant chain conformational states, and
as a consequence, the simulation results are not necessarily
representative of the behavior of real chains observed in
typical experiments in which the time of the experiment is
sufficiently long and/or the number of chains probed by the
experiment is sufficiently large to properly sample the
different conformational states. To overcome the problem
of poor sampling of the rugged free energy landscape,
advanced simulation methods have been developed. In
particular, expanded ensemble simulation methods, such as
the replica exchange method (REM) or parallel tempering
(PT),59-67 multicanonical ensemble method (MUCA),68-70

and four dimensional expanded ensemble algorithm,71,72 have
proven to be very efficient.

In this work, we apply, for a polyethylene chain of finite
length, canonical MD simulations combined with the replica
exchange method (REMD)59,60,73 to explore a wide range
of temperatures, enabling us to efficiently sample the whole
relevant phase space and to provide simulation data of high
quality, which are representative for the equilibrium behavior
of the chain molecule at all studied temperatures. From the
simulation data, we obtain the radial distribution function
and the structure factor of the chain as a function of the
temperature and analyze these statistical properties in detail.
The structure factor is the key property obtained from
scattering experiments and contains statistical information
on the structure of the chain molecule, and therefore this

analysis may be of use in the interpretation of such
experimental data.

Subsequently, we discuss the distribution function of the
largest principal component of the radius of gyration at the
equilibrium melting temperature and discuss the applicability
and the pitfalls of the use of a Landau free energy expression
based on this conformational distribution information. Fi-
nally, we focus on the instantaneous conformational proper-
ties at the equilibrium melting temperature and give a
detailed analysis of the conformational shapes using different
shape parameters.

The paper is organized as follows. First the model and
simulation parameters are described. Then, the structural and
conformational analysis of the simulation results is presented
and discussed. Finally, some conclusions are made.

Simulation Details

In this study, a linear polyethylene chain consisting of N )
200 CH2groups was modeled as a bead-spring chain using
the united atom (UA) approximation for the CH2 units and
making no distinction between middle and end groups. The
united atom approximation is widely used in the simulation
of macromolecules.25,52,74,75 Four types of potentials are
included in our simulation, i.e., bond stretching, angle
bending, torsional rotation, and van der Waals (vdW)
interactions between atoms separated more than two covalent
bonds along the polymer chain (i.e., including the 1-4
interaction). The potential energy expressions and the
parameter values for the united atom model are taken from
the DREIGING force field:76

in which

and

(The summations denote that the potential energy terms are
summed over all bonds, angles, torsion angles, and non-
bonded pairs, respectively), and parameter values are given
in Table S1 of the Supporting Information.

In the following, we use reduced units. The van der Waals
diameter σ, the energy parameter ε, and the mass of the
united atom are taken to define reduced units that are denoted
by the superscript asterisk, for example, reduced temperature
T* ) kBT/ε, reduced density F* ) Fσ3, reduced time t* )
t�(ε/m)/σ, reduced distance r* ) r/σ, and reduced amplitude
of the scattering vector q* ) qσ. For the particular parameter
values used in this study, the following conversions are
obtained: t ) 1.488 × t* with the time t in picoseconds and
T ) 99.921 × T* with the temperature T in degrees Kelvin.

U ) Ubond + Uangle + Utorsion + Uvdw (1)

Ubond ) ∑ 1
2

Kb(l - l0)
2,

Uangle ) ∑ 1
2

Ka(θ - θ0)
2,

Utorsion ) ∑ 1
2

Kt{1 - cos[n(φ - φ0)]}

UvdW ) ∑ ∑ 4ε[(σ
r )12

- (σ
r )6]
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A REMD or parallel tempering molecular dynamics
(PTMD) simulation with in total 77 temperatures, covering
a wide temperature range from 252 to 1511 K, was executed
using at each temperature a massive Nose-Hoover chain
(MNHC) thermostat.77 The reduced time step was ∆t* )
1.6427 × 10-3 (or 2.444 fs in real units). Methods to
optimize the REM parameters (such as the number of replicas
or the temperature distribution) have been discussed recently
byTrebstetal.,78Katzgraberetal.,79NadlerandHansmann,80-82

and others.83-85 In these studies, fine-tuned parameter sets
and optimization strategies have been demonstrated to be
useful in improving the efficiency of REM simulation. In
the present work, we did not use sophisticated optimization
methods. Instead, the temperatures were determined in
preliminary trial REMD simulation runs, ensuring that the
potential energy probability density functions (PDF) for any
two adjacent temperatures have considerable overlap, such
that sufficiently high swapping rates between temperatures
are achieved.86 The used set of reduced temperature values
are given in Table S2 of the Supporting Information.

In the Supporting Information, we make a safe (conserva-
tive) estimate of the number of independent conformations
contributing to the simulation results. Typically, we find that
at each temperature more than 1000 truly independent
conformations contribute to the simulation averages deter-
mined over large number of snapshots, typically 107 in total.
More details about the parameters, the performance, and the
statistics of the REMD simulation are also discussed in the
Supporting Information.

Results and Discussion

1. Temperature Dependence of the Radial Distribu-
tion Function (RDF). In this work, the radial distribution
function (RDF) is used to investigate the intramolecular
structure of the single chain. In Figure 1a and b, the
equilibrium RDF is presented at different temperatures; in
Figure 1a, a 3D plot is given at all simulated temperatures.

The first and highest peak in the RDF is due to the bond
length distribution and appears for all temperatures at r* =
0.422. The maximum of the second peak, situated at r* = 0.690
at the lowest temperature and slightly shifted to r* = 0.706 at
higher temperatures, is due to the distance between 1-3 atoms
(two atoms bonding to a common atom) and is close to the
value r13* = 0.689, calculated from the Dreiding force field
parameters. The shift of this peak indicates that the equilibrium
bond angle in the polymer chain increases slightly as the
temperature increases. The maximum of the third peak located
at r* = 1.06 at T* = 2.52 shifts to a smaller value r* = 1.04
at the highest temperature T* ) 15.12. At the high temperatures,
this peak also gets a shoulder at shorter distances. The reduced
distances between 1-4 atoms (two atoms separated by three
consecutive bonds along the chain) in the trans and the gauche
conformations calculated from the force field are ca. 1.063 and
0.808, respectively. The trans state is energetically more
favorable than the gauche state and, hence, more probable at
lower temperatures. At higher temperatures, the gauche state
becomes more populated and gives rise to the shoulder at a
slightly shorter distance in the RDF. Next to the first three peaks,
in Figure 1b, there are more peaks appearing at larger distances

which are well developed at the lowest temperature T* ) 2.52.
The maxima of these regularly spaced peaks correspond to
distances between two atoms separated by four or more
consecutive bonds with all dihedral angles in the trans state.
At low temperatures, the chain is in the folded lamellar state,86

and the sharpening of these regularly spaced peaks at lower
temperatures indicates the growing and perfecting of the all-
trans stems in the chain folded structure. In an all-trans stem,
all of the torsion angles formed by at least four consecutive
chain units fall in the angular ranges [-π,-5π/6) or (5π/6,π].
The smearing out of the peaks with increasing temperature
indicates the shortening and disordering of the all-trans stems
accompanying the melting of the lamellar crystal, as discussed
previously.86 In Figure 1b, the RDFs at the lowest (T* ) 2.52)
and the highest (T* ) 15.12) temperatures are compared. Here,
it is noticeable that the sharp all-trans peaks are superimposed
on a broader underlying peak.

To better understand the origin of the broadened peak in
the RDF in Figure 1b, we calculate a modified RDF in which
we systematically exclude more and more pair distances from
the calculation. In Figure 2a and b, we show the RDFs
calculated at T* ) 2.52 and T* ) 15.12, respectively, with
an increasing number of excluded pair distances. For
example, in Figure 2, from bottom to top, curve 1 is the full
RDF at the corresponding temperature, curve 2 is calculated
with all pairs [i,i + 1] excluded, curve 2 is calculated with
all pairs [i,i + 1] and [i,i + 2] excluded, and so on, until in
curve 10, the pairs [i,i + 1], [i,i + 2], ..., [i,i + 8], [i,i + 9]
are excluded. In this way, we can hide the contributions of

Figure 1. Radial distribution function of the PE chain. (a) Plot
of RDF versus r* and reduced T*. (b) Detail of the RDF vs r*
at the lowest temperature (Tmin* ) 2.52) and the highest
temperature (Tmax* ) 15.12).
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specific pair distances to the total RDF. As expected with
an increasing number of excluded pair distances, the sharp
peaks in the full RDF are removed, and we are left with the
RDF due to pair distances farther apart along the contour of
the chain. In Figure 2c and d, the full RDF and the RDF
excluding all pairs up to [i,i + 9] are presented in one plot
for T* ) 2.52 and T* ) 15.12. The main finding here is
that the nonbonded RDFs are very different for the two
temperatures. At low temperatures, the nonbonded RDF
clearly shows two peaks, whereas at the high temperature
RDF, only one very broad smeared peak remains. At T* )
2.52, the two rounded peaks at r* = 1.297 and r* = 2.235
are dominated by CH2 units far apart along the chain contour
but that are nearest neighboring and next-nearest neighboring
CH2 units in the hexagonal lamellar folded crystal. Scheme
1 gives a schematic of the cross-section perpendicular to the
stems in the chain folded crystal, illustrating the hexagonal
packing of the CH2 units (represented by the shaded dots).
The reduced distances between the nearest (r* = 1.122) and
next nearest neighboring (r* = 1.944 and r* = 2.245) CH2

units presented in Scheme 1 are calculated from the force
field parameters assuming perfect hexagonal packing of

stems. In Figure 2c, a clear shoulder around r* = 1.1 can
be seen in the first underlying peak with a maximum at r*
= 1.297. The shoulder stems from CH2 units at the vdW
nearest neighbor distance expected from the pair potential.

Figure 2. Full RDFs and partial RDFs including only nonbonded pairs that are at least separated by n number of consecutive
bonds along the chain with n from 1 to 9 at the lowest temperature (Tmin* ) 2.52) and the highest temperature (Tmax* ) 15.12).
(a) A stack plot showing the full RDF and partial RDFs with all of the exclusions at Tmin* ) 2.52. (b) A stack plot showing the full
RDF and partial RDFs with all of the exclusions at Tmax* ) 15.12. (c) Comparison of the full RDF and the partial RDF with the
maximal exclusion at Tmin* ) 2.52. (d) Comparison of the full RDF and the partial RDF with the maximal exclusion at Tmax* )
15.12.

Scheme 1. Schematic Cross-Section Perpendicular to the
Stems in the Chain Folded Crystal, Illustrating the Hexagonal
Packing of the CH2 Units in the All-trans Stemsa

a The reduced distances between the nearest (r* = 1.122) and next
nearest neighboring (r* = 1.944 and r* = 2.245) CH2 units are
calculated from the force field parameters assuming perfect hexagonal
packing of stems.
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However, the maximum of the peak is at r* = 1.297,
indicating that other distances of nonbonded pairs also
contribute to this peak. The chain connectivity leads in the
crystalline state to a tilting of stems, CH2 units in folds, etc.
and makes it so that not all nearest neighbors are located at
the most optimal vdW distance. The peak observed at r* =
2.235 is attributed to next nearest neighbors and contains
CH2 units present in the second neighbor shell (r* = 1.944)
and is attributed to first shell CH2 units in diagonal positions
compared to the central CH2 unit (r* = 2.245).

In Figure 2d, at the highest temperatures T* ) 15.12, the
chain is in the expanded coil state and the RDF shows a
very broad peak which is characteristic for the gaseous-like
density and distribution of the nonbonded pairs.

2. Temperature Dependence of the Static Structure
Factor S(q*). The single-chain static structure factor for an
isotropic system is defined as

where the brackets represent the time average in the MD
simulation. In Figure 3, S(q*) patterns at all temperatures
used in the REMD simulation are presented in a 3D plot.
We will analyze and discuss the relevant regimes of S(q*)
in detail and relate them to the structural changes with the
temperature occurring in the chain.

The two shortest length scales in real space are the
distances between adjacent CH2 units (the covalent bond
length l0* ) 0.422) and the distance between two units
connected to a common CH2 unit (the distance related to
the bond angle r0* = 0.689), corresponding in q* space to
q* ) 2π/l0* = 14.9 and q* ) 2π/r0* = 9.12. We have
ascertained that the detailed shape of S(q*) in the large q*
regime, viz, q* > 2π/0.689 = 9.12, is primarily determined
by the bond length and bond angle distances, which vary
little with the temperature, as can be confirmed in Figure 3.

In the range 2π/�〈Rg
*2〉 < q* < 9.12, both local and larger

scale structure information and scaling behavior for different
chain states are contained. As the temperature decreases, in
this q* range, two peaks emerge (see Figure 3) which, at

the lowest temperature T* ) 2.52, are located at q* = 3.189
and q* = 5.816. The corresponding distances in real space
using Bragg’s law are r* = 1.970 and r* = 1.080,
respectively. These distances are close to the values calcu-
lated on the basis of the force field parameters for the next
nearest and the nearest neighboring all-trans stems (see
Scheme 1). The peak at q* = 5.816 is related to the nearest
nonbonded pairs and is present in the crystalline as well as
the globular state and is characteristic of the high segmental
density in these two states. In the expanded coil state, this
peak disappears as the distribution of the chain segments is
more typical of a gaseous state. The peak at q* = 3.189
corresponding to next nearest neighboring distances is only
present in the crystalline state and is representative of the
ordered state. The appearance of this peak can be used to
determine the equilibrium melting temperature. The equi-
librium melting temperature and the equilibrium lamellar
thickness of the chain folded lamellar crystals have been
determined previously for a PE chain with the same chain
length, using the same force field. The equilibrium melting
temperature was estimated from different properties: in
particular, the peak position of the total heat capacity as well
as the heat capacities due to van der Waals and torsional
interactions were related to the solid-liquid equilibrium; the
changes of the radius of gyration and of the orientational
order parameters of the all-trans stems with temperature were
used to estimate the equilibrium melting temperature.86 The
estimates of the equilibrium melting temperature from these
different properties all gave the same value for the equilib-
rium melting temperature (in reduced units, Tm

0 * ) 4.234).
In Figure 4, we show a detail of S(q*) around q* = 3.189

(peak position for Tmin* ) 2.52) in the vicinity of the
equilibrium melting temperature. We see that a peak exists
at lower temperatures with its maximum at q* ≈ 3 slightly
shifting to lower q* as the temperature increases. The S(q*)
peak height at q* ≈ 3 increases rapidly in the vicinity of
Tm

0 *, indicating that at this temperature the second nearest
neighboring order, characteristic of the crystalline state,
rapidly changes at the equilibrium melting temperature.
Hence, S(q*) can also be used to determine the equilibrium

Figure 3. The static structure factor S(q*) as a function of
reduced q* at the 77 simulation temperatures ranging from
Tmin* ) 2.52 to Tmax* ) 15.12.

S(q*) ) 1

N2〈 ∑
i)1

N

∑
j)1

N sin(q*Rij*)

q*Rij*
〉 (2)

Figure 4. S(q*) around q* = 3.189 at temperatures T* )
4.083, 4.133, 4.183, 4.234, 4.284, 4.335, 4.385, 4.435, and
4.486 (corresponding to the curves from bottom to top at q*
) 2.3).
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melting temperature, leading to an estimate for Tm
0 * in

agreement with the estimate for Tm
0 * obtained from other

independent methods.86

3. Scaling Behavior of S(q*). In Figure 5, the temperature
dependence of 〈Rg*2〉 and the largest principal component
of the radius of gyration 〈L1

*2〉 calculated from the simulation
data is shown; the details have been discussed elsewhere.86

In Figure 6a-d, the S(q*) curves are presented at five
selected temperatures, namely, T* ) 2.52, 5.04, 10.84, 12.60,
and 15.12.

At the lowest temperature T* ) 2.52 and the highest
temperature T* ) 15.12 used in the REMD simulation, the
chain is in the folded chain and the expanded coil state,
respectively. In Figure 5, at T* ) 5.04, the chain has the
smallest 〈Rg*2〉, and at T* ) 10.84, 〈Rg*2〉 shows an
inflection point, which is an indication of the transition
between the globule and coil states, although it does not
define the exact Θ state.87 Finally, T* ) 12.60 is selected
because there is a linear part in the S(q*) where it has a
slope of -2, characteristic of ideal coil behavior.

In the Porod regime, q* > 2π/�〈Rg*2〉, the structure factor
may show scaling behavior, S(q*) ∼(q*)-R with R the Porod
exponent. The value of R can be linked to the shape or the
fractal character of a polymer chain. In a log-log plot of
S(q*) versus q*, the scaling behavior becomes clear as a
linear region of S(q*) with a slope of -R.

In a recent study, Hammouda presented a new Porod-like
analysis to interpret the structure factor obtained in scattering
experiments and applied it to small-angle neutron scattering
data of polymers in a solution forming micelles of various
shapes, including the sphere, the cylinder, and the lamella.
His analysis shows that for a cylindrical micelle three scaling
regimes exist with R ) 0, 1, and 4. It is known that for
three-dimensional objects with smooth surfaces, the Porod
exponent R ) 4, whereas for a one-dimensional rigid rod, it
should be 1.1,88 At the lowest temperature (T* ) 2.52), the
chain folds into a cylinder-like shape with rough surfaces
and S(q*) is flat (R ) 0) at very small q*; at intermediate
q* values (0.1 < q* < 0.2), S(q*) ∼ (q*)-1 can be observed.
As q* further increases, an R ) 4 scaling is reached.

Following Hammouda, this behavior indicates that at this
temperature the chain is present as a cylinder with finite
thickness. When T* ) 5.04, 〈Rg*2〉 has the smallest value;
the chain is in a disordered but compact globular state. The
S(q*) (Figure 5a) shows an extended flat region at low q*
and then quickly drops with exponent R ) 4 and can be
seen to reflect that the chain is spherical with a relative
smooth surface formed.1 At the highest simulation temper-
ature T* ) 15.12, see Figure 5b, the S(q*) data follow a
scaling law with R ≈ 5/3 approximately, which indicates
that the chain behaves like an excluded volume coiled
chain.88 At T* ) 12.60, see Figure 5b, the S(q*) data follow
scaling behavior S(q*) ∼ q*-2 (R ) 2), which indicates the
chain behaves like an ideal coil; i.e., the chain is in the Θ
state.88

4. S(q*) in the Θ Region. In Figure 7, we investigate
the Θ behavior in some more detail and compare the structure
factor S(q*) at five temperatures from the simulation results
with the structure factor calculated assuming that the chain
behaves like an ideal Kuhn chain.

The structure factor of the Kuhn chain is given by

with x* ) (sin q*lK*)/(q*lK*), NK being the number of Kuhn
segments, and lK being the Kuhn length.

The number of Kuhn segments, and the Kuhn length, are
calculated from the end-to-end distance of the chain 〈R2〉
and the contour length L ) (N - 1) · 〈lb〉 · sin(〈θ〉/2), with
〈lb〉 the effective bond length and 〈θ〉 the effective bond angle
also obtained in the simulation. Figure 7a shows
S(q*) ·q*2versus q (Kratky plot), and the best agreement
between the simulation and the Kuhn chain results is obtained
for the temperatures T* ) 12.60 and T* ) 12.85. For higher
and lower temperatures, the simulation data and the Kuhn
result deviate significantly: the chain behaves at higher
temperatures as an excluded volume chain and at lower
temperatures behaves as a globule. Only at the temperatures
T* ) 12.60 and T* ) 12.85 can the chain be treated as an
ideal Kuhn chain of finite size: the temperature region T* )
12.60-12.85 provides a first estimate for the Θ region of
our chain.

In Figure 7b, S(q*) from the REMD simulation at T* )
12.60, S(q*) calculated from the Debye expression for the
Gaussian chain, and S(q*) of the equivalent freely jointed
Kuhn chain are compared. For the Gaussian chain, the Debye
result is

with

Clearly for the temperatures in the Θ region, ideal chain
behavior is reached with the appropriate scaling behavior
S(q*) ∼ q*-2 (denoted by the dotted straight line in Figure

Figure 5. Mean squared radius of gyration 〈Rg*2〉 (circles)
and largest principal component of the radius of gyration 〈L1

*2〉
(triangles).

S(x*) )
1 + (NK - 1)(1 - x*2) - 2x*(1 + x* + x*NK)

NK
2 (1 - x*)2

S(Q*) ) 2(e-Q* - 1 + Q*)

Q*2

Q* )
q*2Nl0

*2

6
) q*2〈Rg

*2〉
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7b). In the small q* range (q* < 0.5), the simulated S(q*) is
in good agreement with the calculated S(q*) based on the
two models. However, in the larger q* region (0.5 < q* e
2), the simulated S(q*) starts deviating from S(q*) for the
Gaussian chain, whereas the S(q*) based on the Kuhn chain
is still in quantitative agreement with the simulation data.
This demonstrates that the ideal behavior of a real chain of
finite length considered here is better described by the finite
freely jointed chain than by the Gaussian chain model.

In experimental practice, Kratky plots are routinely used
to determine the Θ state in the following way: Ideal chain
behavior is assumed when in the Kratky plot S(q*) ·q*2

versus q* becomes independent of q* at intermediate q*. A
detailed Monte Carlo simulation study of the single chain
structure factor at all length scales has been presented for
sufficiently long chains under good and Θ solvents condi-
tions.89 These authors discussed in detail the scaling behavior
from a (modified) Kratky plot under good and Θ-solvent
conditions. It was clearly shown that for sufficiently long
chains the (modified) Kratky plot indeed displays, in agree-
ment with experimental practice, a plateau at intermediate
q* indicative of the chain scaling behavior. The chain length
discussed in this work is certainly not long enough, and
therefore the standard method of analysis does not apply. In
our simulation results, we see that in the Θ region the Kratky

plot does not show a q* range where S(q*) ·q*2 is indepen-
dent of q*. The reason is the following: S(q*) ·q*2 versus
q* only has a horizontal for finite length Gaussian chains or
for sufficiently long ideal chains with constant bond lengths.
The number of Kuhn segments in our chain is rather small,
NK ) 28-30, and therefore the necessary condition of
sufficiently long chains is not met and the Kratky plot of
the ideal Kuhn chain does not have a horizontal line segment.
Hence, in order to ascertain whether the chain behaves
ideally, it is not sufficient to search for a straight line piece;
one must also take into account the long chain condition or,
for smaller chains, consider the full structure factor in the
range 0 e q* < lK. In fact, when we use only the criterion
of a horizontal line piece in the Kratky representation for
our simulation data, we would conclude that at T* ) 13.86
the Θ state is reached, a considerably higher temperature
than the Θ temperature derived from scaling and the Kuhn
analysis. Therefore, in the interpretation of simulation as well
as experimental data, one must take care that all assumptions
are obeyed in order to correctly establish ideal chain
behavior.87

5. Landau Free Energy at Tm
0*: Potential Energy and

Radius of Gyration Distribution Functions. It has been
reported that a chain molecule can have many different
conformational states, such as coiled, globular, rod-like, and

Figure 6. (a) Structure factor S(q*) (shown in symbols) at five different temperatures T* ) 2.52 (squares), 5.04 (circles), 10.84
(upward triangles), 12.60 (downward triangles), and 15.12 (diamonds). Relevant scaling laws (dotted straight lines) are also
presented. (b) Plot of S(q*) at T* ) 15.12. (c) Plot of S(q*) at T* ) 12.60 and (d) plot of S(q*) at T* ) 5.04.
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toriodal states, depending on, e.g., the chain stiffness.90-100

From computer simulations of a single PE chain, it is also
well established that the chain can exist in the coiled,
globular, and chain folded states, but whether other confor-
mational shapes are possible and present is not clear. Here,
we study the conformational shapes of the PE chain at its
equilibrium melting temperature Tm

0* in more detail.
Figure 8 shows the probability density distribution of the

potential energy, a unimodal and Gaussian-like curve.86

However, when we study the relationship between the energy
and the chain shapes, interesting results are found. In Figure
8b, the correlation between the potential energy and the
largest principal component of the mean squared radius of
gyration L1

*2 at Tm
0* ) 4.23 is presented in a scatter plot. Each

point in the scatter plot represents one chain configuration
found in the equilibrium trajectory, which contains 5 × 105

configurations in total.

The probability density function (PDF) of L1
*2, denoted

by P(L1
*2), is presented in Figure 9a. The multimodal feature

in P(L1
*2) has also been observed in the radius of gyration

by others.91 However, the PDF of the potential energy P(U*)
is unimodal, as shown in Figure 8a. To understand how the
configurations with different structural parameters contribute
to the thermodynamic quantity U*, the chain configurations
around each peak found in P(L1

*2) are grouped by their L1
*2

values. Therefore, five groups are defined corresponding to
the five peaks found in P(L1

*2) (the name and boundary for
each group are labeled in Figure 9a). The chain configura-
tions in each group are extracted, and the PDF of the potential
energy for the chain configurations in each group is
calculated. The PDFs for the five configuration groups
(Pi(U*), i ) 1-5, with i the peak index; thin lines) are
presented in Figure 9b. Clearly, the energy distributions
Pi(U*) for the different groups are not distinct and show
considerable overlap. Peak 1 in Figure 9a, which is located
at the largest L1

*2, gives P1(U*) at the lowest energy in Figure
9b. Peak 2, which has the smallest L1

*2, possesses a
distribution at higher energies. The energy distributions of
peaks 3 and 4 are in between the distributions of peaks 1

Figure 7. (a) Krakty plots for T* ) 12.10 (squares), 12.35
(circles), 12.60 (upward triangles), 12.85 (downward triangles),
13.10 (diamonds), 13.86 (leftward triangles), together with the
calculated lines based on the Kuhn model for T* ) 12.10
(solid), 12.35 (dash), 12.60 (dot), 12.85 (dash dot), 13.10
(dash dot dot) 13.86 (short dash). T* ) 12.60 and 12.85 show
the best fitting to the calculated curve (in a sense of nonlinear
least-squares fitting). (b) Comparison of the S(q*) of the REMD
simulation at T* ) 12.60 (circles) and calculated S(q*) based
on the Debye formula for a Gaussian chain (solid line) and
the Kuhn equivalent chain (dashed line).

Figure 8. (a) Probability density distribution of the reduced
potential energy and (b) correlation between the reduced
potential energies U* and the largest principal component of
radius of gyration L1

*2 of 5 × 105 chain configurations at the
crystallization temperature Tm

0* ) 4.23. (b) It is clearly shown
that the population of conformations is unevenly and broadly
distributed along L1

*2, implying that the chain configurations
can be divided into several groups on the basis of a structural
parameter such as L1

*2.
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and 2, with the peak with smaller L1
*2 having a higher energy

distribution Pi(U*). However, peak 5 is an exception to the
relationship between L1

*2 and U*. It is located at higher L1
*2

than peak 2 but also produces an energy distribution P5(U*)
at slightly higher energy than P2(U*).

Before we show the relation between chain dimension and
shape, we would like to comment on the use of a Landau
free energy expression AL(Q) in dependence on a structure
parameter Q, viz, AL(Q) ) A - kT log(pQ(Q)), where A is
the Helmholtz free energy and pQ(Q) the canonical prob-
ability distribution for an order parameter Q. Bimodal and
multimodal probability distributions of Rg

*2 or L1
*2 as have

been presented before in single chain studies were used to
obtain a Landau free energy expression.91,96 Multi(bi)mo-
dality in 〈L1

*2〉 leads to a multi(bi)modal Landau free energy
implying true thermodynamic coexistence between different
conformational states. However, in our case, this conclusion
is not valid, as the potential energy probability density
distribution is unimodal (see Figure 8a) and not multi- or
bimodal. Only when there is a one-to-one correspondence
between the energies of the different conformational states
and the structure parameter Q (e.g., Rg

*2 or L1
*2) characterizing

the different conformational states, bi(multi)modality in the
energy probability density (necessary for thermodynamic
coexistence) would lead to a bi(multi)modality in the

conformational parameter that could be correctly interpreted
in terms of thermodynamic coexistence. Hence, the bi- or
multimodality in 〈L1

*2〉 or 〈Rg
*2〉 observed here does not mean

true coexistence as in a first order phase transition. As
discussed before, for the case studied here, the solid-liquid
transition is a continuous transition.86 Therefore, the use and
applicability of a Landau free energy expression requires that
a unique one-to-one correspondence exists between the order
parameter probability density used in the Landau free energy
approach and the energy probability density relevant for
thermodynamic coexistence behavior. This condition should
be specifically checked to ascertain the applicability of the
Landau free energy approach.

6. Instantaneous Conformational Shapes and Shape
Parameters at Tm

0*. The pattern found in Figure 8b inspired
us to analyze the conformational data using shape parameters
also used by Binder et al.87,101 Two instantaneous shape
parameters K1 and K2 are defined by

with L1
*2 g L2

*2 g L3
*2 being the instantaneous principal

components of the radius of gyration. Note that K2 g K1

and K2 g 0.5 are always true. As their name suggests, these
shape parameters can describe many different shapes of chain
molecules. For example, the polymer chain has a spherical
shape when K1f1 and K2f1, a thin rod conformation when
K1f0 and K2f1, or a thin round disk or ring-like structure
when K1f0.5 and K2f0.5. Other combinations of K1 and
K2 represent intermediate chain shapes in between those
extremes, e.g., ellipsoid.

K1 and K2 for the 5 × 105 instantaneous chain configura-
tions are calculated, and the contour map of the resulting
population as a function of the shape parameters K1 and K2

is presented in Figure 10. According to the definitions of
the shape parameters, K2 g 0.5 and K2 > K1. As we can see
at Tm

0*, the population covers almost all of the possible
combinations of K1 and K2. This is a very interesting result,
since the broad distribution in the shape parameter space
implies that the chain adopts not only the globular and rod-
like conformations but also very diverse shapes at the
transition temperature. Furthermore, the contour map shows
several highly populated regions, which suggests that some
shapes are particularly more favorable. The most dense
population is located at very small K1 and large K2 values,
which define the rod-like structure in agreement with the
folded chain lamellar shape. Another highly populated region
in Figure 10a is centered at K1 ≈ 0.65 and K2 ≈ 0.85, which
are the values typical for ellipsoidal shapes. It is clear that
this region is broader than the region of the rod-like shapes,
which implies that the shapes of the individual configurations
vary a lot (from more disk-like to more spherical ellipsoids).
Besides these two most obvious regions, there are also some
less populated but recognizable high density regions in
between, as can be seen in Figure 10a and b.

With the same definition for the peaks as given in Figure
9a, chain configurations having similar L1

*2 are grouped
together, and their shape parameters are retrieved to locate

Figure 9. (a) Probability density function of L1
*2 and the

definition of the configuration groups based on the peak
locations. (b) The normalized energy distributions for the chain
configurations in each configuration group.

K1 )
L2

*2 + L3
*2

L1
*2 + L2

/2
, K2 )

L1
*2 + L3

*2
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them on the shape parameter map shown in Figure 10. In
Figure 10a, the five configuration groups are indicated by
the arrows in the K1-K2 shape parameter map. Then, the
shape parameter distributions of all the configurations and
the configurations belonging to the defined groups are
presented in Figure 11a and b for K1 and K2, respectively.
Along the K1 axis, the five distributions are totally separated,
whereas along K2 they strongly overlap. This is due to the
fact that the ratio between the largest component L1

*2 and
two smaller components L2

*2 or L3
*2 of the radius of gyration

is more prominent than the ratio between the two smaller
ones L2

*2/L3
*2. As a result, K1 is a better measure for

identifying the different individual chain shapes at the
equilibrium melting temperature. P(K1) shows obvious
multiple peak features as also observed in P(L1

*2).
7. Instantaneous Shapes at Tm

0*: Snapshots of Repre-
sentative Chain Conformations. The distributions of the
shape parameters K1 and K2 give statistical information. From
Figure 11, we know peak 1 includes chain configurations
having the smallest K1f0 but largest K2f1, which clearly
tells us most of them are rod-shaped. Peak 2 (both small K1

and K2) collects conformations which are more spherical.

Peaks 3, 4, and 5 sit in between, which means the overall
shapes change from a perfect rod to ellipsoid.

Molecular simulations allow us to study individual con-
figurations in great detail. To verify our analysis based on
the shape parameters and to characterize the chain configura-
tions in the aforementioned configuration groups, snapshots
for the chain configurations in each group are extracted and
visualized.

First, the extreme configuration at the smallest K1 ) 0.114
and the largest K2 ) 0.992 observed during the simulation
is shown in Figure 12. The polymer chain folds itself into
six parallel stems forming a long and thin rod. However,
the parallel stems are not perfectly aligned, and this causes
the CH2 units in the loops and at the ends of the parallel
stems to have fewer van der Waals contacts with neighboring
stems than when the stems would be properly aligned. As a
consequence, the potential energy increases. This explains
why this configuration does not fall into the most probable
region defined by peak 1 in the shape parameter map.

The second extreme is located in the upper-right corner
of the shape parameter map triangle with both K1 and K2

Figure 10. (a) Contour map of the population of the 5 × 105

chain configurations in the 2D space defined by the shape
parameters K1 and K2 at the equilibrium melting temperature
Tm

0* = 4.234 and (b) detail of the contour map in the small K1

region.

Figure 11. Probability density distribution of the 5 × 105 chain
configurations as a function of shape parameter K1 (a) and
K2 (b) at the equilibrium melting temperature Tm

0* = 4.234. The
normalized distributions of K1 and K2 of the chain configura-
tions in the separate configuration groups are also presented
in a and b, respectively.
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approaching 1 (K1 ) K2 ) 1 represent a perfect sphere). In
our simulation, the configuration with the largest K1 and the
largest K2 simultaneously is found at K1 ) 0.876 and K2 )
0.930 and is shown in Figure 13. The side view and the top
view show that the chain has similar sizes in all dimensions,
although it is far from a perfect sphere. Furthermore, the
chain shows some kind of ordering: some short all-trans
segments swirl about one axis and keep parallel to each other.

Disk-like shapes have similar K1 and K2 values. A chain
configuration having K1 and K2 the closest to each other is
located at K1 ) 0.601 and K2 ) 0.638 and is shown in Figure
14. It looks more like a “donut” than a disk. Similar toroidal
structures for a polymer chain have also been observed in
other simulations24,87,96,97,99,101,102 for polymer chains with

a high degree of stiffness. Although polyethylene is normally
categorized as a flexible chain, toroidal shapes can also be
explored by the PE chain.

The three extreme conformations presented above do not
represent the most probable conformation in each group.
However, they help us to understand or imagine what an
actual chain configuration looks like and the link between
the shape parameters and the chain unit arrangement. To
study the most probable configurations, we show in Figure
15 the snapshots of representative chain configurations
located in the peak positions of the five different groups in
Figure 11a and b.

Figure 15a shows a typical rod-like structure formed by
parallel arranged all-trans stems found at K1 ) 0.172 and
K2 ) 0.987. Unlike the configuration shown in Figure 12,
the all-trans stems appear to be better aligned and form a
well ordered rod with both ends capped by the chain loops.
There are seven folds in the rod-shaped configuration, which
is less than the number found for the conformation in Figure
12, and therefore the rod is shorter. This configuration has
lower energy since both the conformational energy and the
nonbonded interaction are minimized.

For the other highly populated peak, peak 2, the favorable
configuration at K1 ) 0.602 and K2 ) 0.864 looks like the
one presented in Figure 15b, a compact ellipsoid with a
certain degree of ordering. The configuration presented in
Figure 15c is found in peak 3 (the one next to group 1 along
K1) with K1 ) 0.242 and K2 ) 0.944. It has eight folds and
even shorter all-trans segments. It is also twisted because
of the occurrence of a few defects (i.e., a few gauche
conformations) in the stems. Figure 15d and e are the
configurations at the centers of peaks 4 and 5 in the shape
parameter map, respectively. These groups of intermediate
K1 and K2 collect many different shapes which are located

Figure 12. Lateral view and intersection view of the chain
configuration (N ) 200) with shape parameters K1 ) 0.114
and K2 ) 0.992 at Tm

0* = 4.234.

Figure 13. Lateral view and intersection view of the chain
configuration (N ) 200) with shape parameters K1 ) 0.876
and K2 ) 0.930 at Tm

0* = 4.234.

Figure 14. Lateral view and intersection view of the chain
configuration (N ) 200) with shape parameters K1 ) 0.601
and K2 ) 0.638 at Tm

0* = 4.234.
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between the perfect rod and the ellipsoid. Figure 15d presents
the configuration found at K1 ) 0.367 and K2 ) 0.930: it is
a thicker toroid. The configuration in Figure 15e with K1 )
0.463 and K2 ) 0.926 looks like an intermediate state
between the folded rod and the toroidal configuration with
the all-trans stems tilted.

Conclusions

Using the parallel tempering canonical molecular dynamics
method, a polyethylene chain of 200 CH2 united atom units
is simulated in a very broad temperature range covering both
the coil-globule and the globule-rod transitions of the
polymer chain. The structural and conformational properties
of the polyethylene chain derived from the simulation results
are discussed.

The radial distribution function and the structure factor
of the chain have been analyzed in great detail. The peaks
in the RDF have been assigned to characteristic distances in
the chain: bond length, bond angle, torsional distances of
four CH2 units up to 10 CH2 units provide distinct and sharp
peaks in the RDF which gradually broaden with increasing
temperature. The peaks related to torsional distances of four
and more CH2 units gradually disappear with increasing
temperature. However, these peaks do not disappear abruptly
at the equilibrium melting temperature, and therefore these
peaks are not typical for the crystalline state or the equilib-

rium transition temperature. At the equilibrium melting
temperature, a broad peak appears that becomes more
pronounced at lower temperatures. This broader peak stems
from next nearest neighbor hexagonal distances characteristic
of the ordered crystalline lamellar state.

Also in the structure factor S(q*), the different peaks have
been analyzed and assigned to different length scales in the
chain molecule. At very high q*, S(q*) is related to smaller
length scales, and distinct features due to bond lengths, bond
angles, and torsion angles were resolved and can serve as
fingerprints for these atomistic distances in the chain. At
smaller q* values, in the regime [�(〈Rg

*2〉)]-1 , q* , l0
*-1,

the structure factor reflects both local and larger-scale
structure information. In this regime, two peaks emerge as
the temperature decreases that are located at the lowest
temperature Tmin* ) 2.52 at q* = 3.189 and q* = 5.186. The
peak at q* = 5.186 is also present in the globular state and
is thus not representative for the crystallized chain but is
related to nearest neighbor distances which are typical for
the high segment densities in the crystalline and globular
states. On the other hand, the peak at q* = 3.189 is related
to the formation of periodic structures and has successfully
been used to determine the equilibrium melting temperature
on the basis of structure factor (scattering) information. The
use of S(q*) in this manner links to the experimental practice
of studying crystallization/melting transitions in materials

Figure 15. Snapshots of typical chain configurations (N ) 200) selected in the peak maxima of the shape parameter distributions
shown in Figure 11. (a) K1 ) 0.172 and K2 ) 0.987, (b) K1 ) 0.602 and K2 ) 0.864, (c) K1 ) 0.242 and K2 ) 0.944, (d) K1 )
0.367 and K2 ) 0.930, and (e) K1 ) 0.463 and K2 ) 0.926.

Replica Exchange Molecular Dynamics Simulation J. Chem. Theory Comput., Vol. 7, No. 1, 2011 199



using scattering techniques, and the equilibrium melting
temperature established in this way is in quantitative agree-
ment with the equilibrium melting temperature determined
from other properties.86

Following Hammouda, the full q*-range scaling behavior
of S(q*) is studied in detail and related to the conformational
properties. At low temperatures, the scaling analysis indicates
that the chain is in a rod-like structure. At temperatures
slightly higher than the equilibrium melting temperature, the
scaling behavior is found to be in agreement with the globular
state, and at the highest temperature, the scaling behavior is
indicative of the expanded excluded volume coil.

In the Θ region, the ideal chain behavior is not only shown
by the scaling analysis but is also obtained from a quantitative
comparison of the full S(q*) with the structure factor of the
equivalent Kuhn chain. In doing this detailed analysis, we
have been able to determine the Θ region of our chain with
good accuracy without having to resort to the studies of
different chain lengths.

However, we also have shown that a correct assignment
of the Θ region requires care, and the presence of a horizontal
line piece in the Kratky plot is not sufficient evidence of Θ
conditions. For our PE 200 chain, the equivalent Kuhn chain
only contains ca. 30 Kuhn segments, which is not long
enough to fulfill the long or Gaussian chain approximations.
As a result, in the Kratky plot, the ideal chain behavior is
not reflected by a horizontal line piece at intermediate q* in
S(q*) ·q*2 vs q* (typical for Gaussian chains and in practice
used as the signature of ideal chain behavior) but has a
sigmoidal shape. However, at higher temperatures when the
chain behaves already as an excluded volume chain, a
horizontal line piece is present in the Kratky plot, and one
could mistakenly take this temperature as the Θ temperature.
Therefore, for smaller chain lengths, only a comparison of
the full structure factor leads to consistent and accurate
determination of the Θ region.

A detailed analysis of the chain conformational shapes was
done at the equilibrium melting temperature. The confor-
mational shapes of the PE chain were represented in
conformational distribution functions using the eigenvalue
of the largest principal component of the radius of gyration
tensor as well as the shape parameters K1 and K2 as order
parameters. The conformational distribution functions have
a multimodal dependence on the selected order parameters.
The different distinct conformational regions that were found
include the already know expanded coil, globular, and chain
folded lamellar structures. However, also a distinct region
of toroidal or more disk-like structures is discernible. These
structures are normally linked to stiffer chain molecules and
are rather unexpected for the flexible PE molecule. So far,
the toroidal state had not been identified in simulations on
PE chains. From our results, it is now clear that, at the
equilibrium transition temperature, the PE chain can take,
next to the common rod-like lamellar and globular structures,
indicative of the solid and liquid states, also a greater
diversity of conformational shapes, including toroidal shapes.

Although different conformational regions are found, their
potential energy probability densities are not distinct but
largely overlap. As a consequence, the use of the multimodal

conformational density distributions in a Landau free energy
lead to erroneous predictions of true thermodynamic coexist-
ence behavior between different conformational states. In
our case studied here, the chain conformations can continu-
ously change from one region to the other, resulting also in
a continuous transition instead of a first-order transition
characterized by coexisting states. The applicability of the
Landau free energy approach should always be checked and
is only valid when there is a one to one correspondence
between the energy and conformational distributions. The
shape parameter analysis is further clarified and exemplified
by a study of characteristic snapshots from the conforma-
tional distribution function.
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Abstract: Qualified, stable, and efficient molecular surface meshing appears to be necessitated
by recent developments for realistic mathematical modeling and numerical simulation of biomolecules,
especially in implicit solvent modeling (e.g., see a review in B. Z. Lu et al. Commun. Comput. Phys.
2008, 3, 973-1009). In this paper, we present a new method: tracing molecular surface for meshing
(TMSmesh) the Gaussian surface of biomolecules. The method computes the surface points by
solving a nonlinear equation directly, polygonizes by connecting surface points through a trace
technique, and finally outputs a triangulated mesh. TMSmesh has a linear complexity with respect
to the number of atoms and is shown to be capable of handling molecules consisting of more than
one million atoms, which is usually difficult for the existing methods for surface generation used in
molecular visualization and geometry analysis. Moreover, the meshes generated by TMSmesh are
successfully tested in boundary element solutions of the Poisson-Boltzmann equation, which directly
gives rise to a route to simulate electrostatic solvation of large-scale molecular systems. The binary
version of TMSmesh and a set of representative PQR benchmark molecules are downloadable at
our Web page http://lsec.cc.ac.cn/∼lubz/Meshing.html.

Introduction

Molecular surface mesh is widely used for visualization and
geometry analysis in computational structural biology and
structural bioinformatics. Recent developments in realistic
mathematical modeling and numerical simulation of biomo-
lecular systems raise new demands for qualified, stable, and
efficient surface meshing, especially in implicit-solvent
modeling (e.g., see a review in ref 1). Main concerns for
improvement on existing methods for molecular surface mesh
generation are efficiency, robustness, and mesh quality.
Efficiency is necessary for simulations/computations requir-
ing frequent mesh generation or requiring mesh of large
systems. Robustness here means the meshing method is
stable and can treat various, even arbitrary, sizes of molecular

systems within computer power limitations. Mesh quality
relates to mesh smoothness (avoiding sharp solid angles,
etc.), uniformness (avoiding elements with very sharp angles
or zero area), and topological correctness (avoiding isolated
vertices, element intersection, single-element-connected edges,
etc.). The quality requirement is critical for some numerical
techniques, such as finite element method, to achieve
converged and reasonable results, which makes it a more
demanding task in this respect than the mesh generations
only for the purposes of visualization or some structural
geometry analysis.

Various definitions of molecular surface, including the van
der Waals (VDW) surface, solvent accessible surface (SAS),
solvent excluded surface (SES), molecular skin surface,2

minimal molecular surface,3 and Gaussian surface, etc., have
been proposed to describe the shapes of molecular structure.
The VDW surface is defined as the surface of the union of
the spherical atomic surfaces with the VDW radius of each
atom in the molecule. The SAS and SES are represented by
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† SooChow University.
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the trajectory of the center and the interboundary of a rolling
probe on the VDW surface, respectively. The molecular skin
surface is the envelope of an infinite family of spheres
derived from atoms by convex combination and shrinking.
The minimal molecular surface is defined as a result of the
surface free energy minimization. Different from these
definitions, the Gaussian surface is defined as a level set of
the summation of the Gaussian kernel functions as follows

where

cbi and ri are the location and radius of atom i, the parameter
d is negative and controls the decay speed of the kernel
functions. When |d| is increased, the resulting Gaussian
surface is closer to the VDW surface. In this work, the value
of d and t0 are set as -1 and 1, respectively. Compared with
other definitions of molecular surface, the Gaussian surface
is smooth and more suitable to represent the electron density
of a molecule.4 The VDW surface, SAS, and SES can be
approximated well by the Gaussian surface with proper
parameter selection.4,5 The Gaussian surface has been widely
used in many problems in computational biology, such as
docking problems,6 molecular shape comparisons,7 calculat-
ing SAS areas,8 and the generalized Born models.9

With various definitions of molecular surface that have
been proposed, numerous works have been devoted to the
computation of molecular surface. The representative ones
are described as follows. In 1983, Connolly proposed
algorithms to calculate the molecular surface and SAS
analytically.10,11 In 1995, a popular program, GRASP, for
visualizing molecular surfaces was presented.12 In 1997,
Vorobjev et al. proposed SIMS, a method of calculating a
smooth invariant molecular dot surface, in which an exact
method for removing self-intersecting parts and smoothing
the singular regions of the SES was presented.13 Sanner et
al. presented a tool based on R shapes,14 named MSMS, for
meshing the SES.15 Ryu et al. proposed a method based on
� shapes that are a generalization of R shapes.16 More
recently, Zhang et al. used a modified dual contouring
method to generate mesh for biomolecular structures,17 and
a later tool, GAMer, was developed for improving the mesh
quality.18 Can et al. proposed LSMS to generate the SES on
grid points using level-set methods.19 Chavent et al. presented
MetaMol to visualize the molecular skin surface using the
ray-casting method,20 and Cheng et al. used restricted union
of balls to generate mesh for molecular skin surfaces.21 So
far, these methods or tools usually successfully calculated
different surfaces of small- or medium-sized biomolecules,
but they are not suitable for large molecules with more than
hundreds of thousands of atoms. Moreover, most of these
methods, such as GRASP, MSMS, and LSMS were designed
for molecular visualization and geometry analysis in com-
putational structure biology or structural bioinformatics.
Among those, MSMS is the most widely used one for
molecular surface triangulation because of its high efficiency.

However, the generated mesh is not a manifold and is
composed of very irregular triangles. For some numerical
modeling using, for instance, finite element/boundary element
methods, the mesh quality usually needs to be improved
through mesh topology checking (picking out the irregular
nodes/edges/elements and rearranging the mesh), surface
mesh smoothing, and so on.1 In this paper, we develop a
robust method, named TMSmesh that is capable of finishing
meshing the Gaussian surface for biomolecules consisting
of more than one million atoms in 30 min on a typical 2010
PC, and the mesh quality is shown to be applicable to
boundary element method simulations of biomolecular
electrostatics.

As the Gaussian surface is an implicit surface, the existing
techniques for triangulating implicit surface can be used for
the Gaussian surface. These methods are divided into two
main categories: spatial partition and continuation methods.
The well-known marching cubes22 and dual contouring
methods23 are examples of the spatial partition methods. This
kind of method divides the space into cells and polygonizes
the implicit surface in the cell whose vertices have different
signs of the implicit function. An assumption is required that
the implicit function is linear in the cell. As shown in the
following sections, TMSmesh does not require this assump-
tion. The continuation methods24-26 are of another category.
These methods mesh the implicit surface by growing current
polygonization’s border through the predictor-corrector
method, which predicts the next surface point in the tangent
direction of the current one and corrects it on the surface.
The predictor-corrector method is used in TMSmesh to
generate the next corrected point on the surface from current
one, and the topology connection is confirmed by checking
the continuity between the corrected and the current points,
otherwise we restart the predictor-corrector from the current
point with a smaller step size, until the continuity is fulfilled.
The above process is defined as the trace technique in this
paper, and it can be seen as a generalization of the
predictor-corrector method. The quality of mesh triangles
is well controlled in continuation methods, but techniques
for avoiding overlapping, filling the gap between adjacent
branches, and selecting proper initial triangles are required.
In TMSmesh, no problems of overlapping, gap filling, and
selecting initial seeds need to be considered, because the
Gaussian surface is polygonized by connecting presampled
surface points.

This paper is organized as follows. In Method Section,
we present our method for polygonizing the Gaussian surface.
Some examples and applications are presented in the Results
Section. The final section, Conclusion, gives some conclud-
ing remarks.

Method

In this section, we describe the algorithm for meshing the
Gaussian surface. Our algorithm contains two stages. The
first stage is to compute the points on the surface by solving
a nonlinear equation φ(xb) ) t0. The second stage is to
polygonize the Gaussian surface by connecting the generated
points. In the following subsections, each stage is described
in detail.

{xb ∈ R
3, φ(xb) ) t0} (1)

φ(xb) ) ∑
i)1

N

ed(| xb - cbi|
2/ri

2-1) (2)
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Computing the Points on the Gaussian Surface. From
the definition of Gaussian surface, the points on the Gaussian
surface are the roots of nonlinear equation φ(x, y, z) ) t0,
where φ(x, y, z) is defined in eq 2. Therefore, solving φ(x, y,
z) ) t0 is equivalent to computing the points on the Gaussian
surface. In this method the equation is solved by the
following steps.

Suppose the molecule is placed on a three-dimensional
orthogonal grid consisting of nx × ny × nz cubes. For an
arbitrary cube [xi, xi + h] × [yi, yi + h] × [zi, zi + h], where
(xi, yi, zi) is the lower-left front corner, and h is the edge
length of the cube. To decide whether the cube has an
intersection with the surface, we proposed the following
lower and upper bounds of φ(x) in the cube for Gaussian
surface:

for (x, y, z) ∈ [xi, xi + h] × [yi, yi + h] × [zi, zi + h], where

with R ∈ {x, y, z} and cbk ) (cx
k, cy

k, cz
k). Uk,i

R and Lk,i
R are the

upper and lower bounds along R-dimension of the kernel
located at atom k in the cube, respectively. Uk,i

R and Lk,i
R take

either 1 or a value of the kernel at the boundary of the cube.
If t0 ∈ [Li, Ui], then the Gaussian surface φ (x, y, z) ) t0

may have an intersection with cube [xi, xi + h] × [yi, yi +
h] × [zi, zi + h], otherwise there is no surface point in the
cube. Note that the upper-bound Ui and the lower-bound Li

depend on the edge length of the cube h. The bounds are
sharper when h is smaller. Above estimation is easy to
combine with an octree data structure to decide intersection
more adaptively.

The above estimation technique allows the deletion of the
majority of cubes, which do not intersect the surface. In each
of the left cubes, some surface points are sampled through
root finding. Suppose the cube [xi0, xi0 + h] × [yi0, yi0 + h]
× [zi0, zi0 + h] is one of them, we solve the nonlinear equation
φij(x) } φ (x, yi0 + ih̃, zi0 + jh̃) ) t0, for each {i, j}, i, j )
1, ..., [h/h̃]. The h̃ is to control the vertex density of the mesh.
To find the roots, φ (x, yi, zj), x ∈ [xi0, xi0 + h], is
approximated by the following Mth-degree polynomial:

where an ) ∫-1
1 φ[hx/2 + (xi0 + h/2),yi, zj]Ln(x)dx, Ln(x) is

the nth-degree Legendre polynomial, M is set as 10, and h
is 4 Å in our work. Then pij[2(x - xi0)/h + 1] ) t0 is solved
using Jenkins-Traub method.27 The real roots of pij[2(x -

xi0)/h + 1] ) t0 in [xi0, xi0 + h] should be checked by |φ (x,
yi, zj) - t0| < ε (ε is an error tolerance) and be improved by
Newton iterations, if needed. This process may lose some
roots of φij(x) ) t0, due to approximation of pij[2(x - xi0)/h
+ 1] to φij(x), but they would be found through trace
processes in the polygonization stage.

Trace Step. In this subsection, the trace step employed
in polygonization stage is described in detail. The objective
of the trace step is to connect two (previously identified)
grid-surface intersection points. In the trace step, the next
connected surface point is predicted and corrected from the
initial point with an initial step size, and the connection is
confirmed through checking the continuity between the two
points. If the continuity is not fulfilled, then restart the
prediction and the correction process from the initial point
with a smaller step size. Because every trace step is
performed either on xy- or yz-planes between lines parallel
to the x-axis in the polygonizaton stage, we discuss the details
of the trace step on the xy-plane between two lines parallel
to the x-axis as an example. Suppose there are two lines y
) y0 and y ) y1 on the xy-plane with four surface points
(x0, y0), (x1, y0), (x2, y1), (x3, y1) on them and y1 > y0, φx(x0,
y0) > 0, Algorithm 1 connects (x0, y0) and (x1, y0) (see Figure
1). Moreover, the extreme point (x*, y*) is caught during
the trace step to preserve the details of the surface.

In the step 2 of Algorithm 1, pb0′ is the predicted surface
point from pb0 along the tangent direction at pb0 with step size
h2. Step 3 is to correct pb0′ back to the surface along the
gradient direction of φ(x) at pb0′. Step 4 is to check whether
pb1 is an extreme point along the x-direction. In step 5,
condition (f1) is used to determine if the step-size h2 is
acceptable through checking whether the angle between the
normal directions at pb0 and pb1 is small enough, otherwise
restart the prediction and the correction from pb0 with a

Figure 1. Schematic picture of Algorithm 1. Curved lines
indicate the surface on the xy-plane. Arrows on the surface
denote the normal directions of the Gaussian surface on the
xy-plane pointing to the outside of the molecule. The pb0 is
the initial point, (x*, y*) is an extreme point along x-direction,
and (x1, y0) is the final connected point on the surface obtained
through the trace step from pb0. As an illustration, x̃0′ and x̃1

on the dashed line that kinks near the curve on the right-hand
side are the predicted and corrected points with a larger initial
step h1, which can be avoided through conditions (f1) in
algorithm 1. While pb0′ is the predicted point along the tangent
direction of pb0 with a smaller step size h1/2, and pb1 is the
corrected surface point from pb0′.

Li ) ∑
k)1

N

e-dLk,i
x Lk,i

y Lk,i
z e φ(x, y, z) e

∑
k)1

N

e-dUk,i
x Uk,i

y Uk,i
z ) Ui (3)

Uk,i
R ) {1, cR

k ∈ [Ri,Ri + h]

max{ed(Ri - cRk )2/rk
2
, ed(Ri - cRk )2/rk

2
}, cR

k ∉ [Ri,Ri + h]
(4)

Lk,l
R ) min{ed(Ri - cRk )2/rk

2
, ed(Ri - cRk )2/rk

2
} (5)

pij(2(x - xi0
)/h + 1) ) ∑

n)1

M

(2i + 1)anLn[2(x - xi0
)/

h + 1]/2 (6)
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smaller step size; δ is a user-specified bound for cosine value
of the angle. If the condition is not sufficient in some cases,
then other conditions can be added, such as continuity of
higher order derivatives. In the case that an extreme point
along the x-direction exists between pb0 and pb1, condition (f2)
is used to detect it. In step 6, if the line segment connecting
pb0 and pb1 crosses the line y ) y0 (or y ) y1), then the point
of intersection is the final trace point. In step 7, pb0 is replaced
by pb1 and starts tracing the next connected surface point from
step 1. This process indicates that the final connected point
can be located through trace step from initial point, therefore,
the position of the final point needs not be known before
the trace process. For this reason, a disjointed part of the
whole surface will not be missed after the polygonization
stage unless no points from the disjointed part are found in
the stage of the surface point sampling.

Polygonization. This section is devoted to the polygoniza-
tion step which connects the presampled points obtained
through the process described in the section of computing
surface points. Because solving φ(x, y, z) ) t0 for different
y, z values is equivalent to finding the intersection points of
the surface and the different lines parallel to x-axis, polygoniza-
tion of the whole surface can be achieved through connecting
these points on every adjacent four lines. The problem is
how to connect the surface points on the adjacent four lines.
Suppose we have surface points set P consisting of four lists
of points:

in the four adjacent lines:

Without loss of generality, assume n1 > 0 and (x1
1, y0, z0) }

pb0 is chosen to be the initial point. Through invoking the
trace step described in former subsection, Algorithm 2 is to
connect the points on the four adjacent lines to form small
closed loops, i.e., polygons, on the surface.

Algorithm 2 is repeated until all points are connected, i.e.,
P is empty. This algorithm traces vertices of polygons in
xy- and xz-planes alternately. The variable idx records the
location of the last trace step, and the sigx records the
direction of the first trace step. If the traced vertex is not in
the same xy- or xz-plane as pb0, then the next trace direction
will be reversed. After Algorithm 2 is finished, pbj, j ) 0, ...,
i - 1, and the extreme points (if they exist) along the
x-direction obtained during the trace steps are connected and
form a polygon on the surface. Figure 2 shows some

Figure 2. Some polygons with different numbers of vertices
obtained from Algorithm 2. The unlabeled vertices are extreme
points obtained from the trace steps.

{x1
i , y0, z0}, i ) 1, ..., n1 (7)

{x2
i , y0 + h̃, z0}, i ) 1, ..., n2 (8)

{x3
i , y0, z0 + h̃}, i ) 1, ..., n3 (9)

{x4
i , y0 + h̃, z0 + h̃}, i ) 1, ..., n4 (10)

{y ) y0

z ) z0
, {y ) y0 + h̃

z ) z0
, {y ) y0

z ) z0 + h̃
, {y ) y0 + h̃

z ) z0 + h̃
(11)
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examples of polygons with a different number of vertices
obtained with Algorithm 2. The polygon can be simpler when
the distances between the adjacent lines are shorter due to
the smoothness of Gaussian surface. Based on the polygonized
surface, the triangulation of the surface can be produced using
standard polygon triangulation methods.28

Results

Performance. In this section, the performance of TMS-
mesh is compared with those of LSMS and MSMS. LSMS
is a very fast program using a level-set method to present
the surface based on cubic grids. MSMS is a typical and
efficient software to triangulate the SES in the modeling area.
A set of biomolecules with different sizes is chosen as a
test benchmark. The meshing softwares are run on the
molecular PQR files (PDB + atomic charges and radii
information). For tests of the mesh tool and its applications
in this work, we prepare a PQR benchmark (see Table 1)
that can be found and is downloadable at our web page http://
lsec.cc.ac.cn/∼lubz/Meshing.html. It is worth making a note
here about the vertex density used in TMSmesh and LSMS
for comparison with MSMS surface density. For TMSmesh,
grid spaces of 1.0 and 0.7 Å are chosen to approximate the

molecular surface vertex densities 1/Å2 and 2/Å2, respec-
tively. For LSMS, the current implementation works only
on the following grid sizes: 163, 323, 643, 1283, 2563, and
5123 (requiring a 4GB memory machine). Therefore, for each
molecule, a proper grid size in LSMS is chosen to achieve
the approximate density of 1/Å2 or 2/Å2, according to the
maximum molecular length in xyz directions.

Table 2 shows the CPU time and memory use for these
methods with 1 and 2 vertex/Å2 mesh density. All computa-
tions run on Dell Precision T7500 with Intel(R) Xeon(R)
CPU 3.3 GHz and 48GB memory under 64bit Linux system.
As shown in Table 2, TMSmesh costs less memory than
LSMS and MSMS but much more CPU time for small- or
medium-sized molecules. The main cost of TMSmesh is in
the polygonization stage that connects the presampled surface
points on parallel lines through invoking the trace steps
intensively. During each trace step, prediction and correction
need to be performed several times with a small step size
about 0.1 to 0.2 Å, i.e., there needs to be 5-10 prediction-
correction steps within 1 Å distance on the surface to ensure
the continuity of curves connecting vertices. However, LSMS
directly searches and approximates the molecular surface
based on cubic grid points using the level-set method. MSMS
analytically computes molecular surface by first generating
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the so-called reduced surface that is obtained directly from
atomic geometry information. Both LSMS and MSMS avoid
the time-consuming step, polygonization. This makes LSMS
and MSMS cost less CPU time than that of TMSmesh.
Nevertheless, either the surface topology or the smoothness
may not be guaranteed in LSMS and MSMS. TMSmesh is
expected to be speeded up using an adaptive box structure,
parallel computing, and more sophisticated polygonization
algorithm. For LSMS, the cost is proportional to L3, where
L is the number of grids in one dimension. Therefore, the
memory requirement and the CPU time increase dramatically
when L becomes large. For MSMS, the computational
complexity is O[N log(N)], where N is the number of atoms,
but the singularity of the molecular surface may cause
numerical instability and produce incorrect results. In TMS-
mesh, the number of cubes is proportional to the number of
atoms, since the edge length of cube is fixed to be 4 Å in
our work. In addition, the calculations are done locally, and
no global information is needed during the process of
estimating the bounds of φ(x) in each cube, computing
surface points, and tracing of the left cubes intersecting the
surface. The reason is that calculating the values of φ(x) and
its gradients only need to sum Gaussian kernels for near

atoms, as the Gaussian kernel ed(|xb-cbi|
2/ri

2-1) decreases to 0
faster when ||xb- cbi|| is large. As shown in Table 2 and Figure
3, the complexity of TMSmesh is O(N). Compared to LSMS
and MSMS, TMSmesh produces triangulations of a smooth
surface, and it can be successfully applied to a biomolecule
consisting of more than one million atoms, such as the
dengue virus as shown in Figure 4. Because the virus
structure is among the largest ones in the Protein Data Bank

Table 1. Description of Molecules in the PQR Benchmark

molecule
(name or PDB code) number of atoms description

GLY 7 a single glycine residue
ADP 39 ADP molecule
2JM0 589 PDB code, chicken villin headpiece subdomain containing a

fluorinated side chain in the core
FAS2 906 fasciculin2, a peptidic inhibitor of AChE
AChE monomer 8280 mouse acetylcholinesterase monomer
AChE tetramer 36 638 the structure of AChE tetramer, taken from ref 29
30S ribosome 88 431 30S ribosome, the PDB code is 1FJF
70S ribosome 165 337 obtained from 70S_ribosome3.7A_model140.pdb.gz on http://

rna.ucsc.edu/rnacenter/ribosome_downloads.html
3K1Q 203 135 PDB code, a backbone model of an aquareovirus virion
2X9XX 510 727 a complex structure of the 70S ribosome bound to release factor 2

and a substrate analog, which has 4 split PDB entries: 2X9R,
2X9S, 2X9T, and 2X9U30

1K4R 1 082 160 PDB code, the envelope protein of the dengue virus31

Table 2. CPU Time and Memory Use for Molecular Surface Generation by TMSmesh, LSMS, and MSMSa

CPU time (S) memory use (MB)

molecule number of atoms TMSmesh LSMSb MSMS TMSmesh LSMS MSMS

FAS2 906 1.2 0.05 0.1 2 10 2
1.8 0.1 0.1 4 19 2

AChE monomer 8280 12 0.1 0.6 11 21 21
19 0.4 0.8 19 33 21

AChE tetramer 36 638 40 0.5 5.9 36 346 75
62 3.6 7.1 54 257 79

30S ribosome 88 431 92 3.6 16.2 64 260 198
151 28.1 19.1 100 2016 212

70S ribosome 165 337 180 3.8 46.2 127 262 469
283 28.6 Fail 185 2100 -

3K1Q 203 135 226 4.0 51.5 131 262 383
359 28.9 55.1 192 2100 410

2X9XX 510 727 577 30.5 Fail 271 2100 -
910 Fail Fail 410 - -

1K4R 1 082 160 1260 30.5 Fail 630 2168 -
2080 Fail Fail 890 - -

a The data in the first and second row for each molecule are corresponding to the density 1 vertex/Å2 and 2 vertex/Å2, respectively. b The
failed cases in this column require a grid size of 10243 or larger, which is not supported by LSMS.

Figure 3. Computational performance of TMSmesh.
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(PDB), together with consideration of good algorithm
stability, TMSmesh can be expected to be capable of
handling the arbitrary size of molecules available in PDB.

Because MSMS is a widely used tool for surface meshing
in molecular modeling, we compare the qualities, in particular
uniformness, of triangles produced by TMSmesh and MSMS.
The distributions of the ratios of the shortest to longest edge
lengths of each triangle are used to describe the uniformness
of meshes. A ratio of 1.0 corresponds to an equilateral
triangle, and a ratio close to 0 indicates poor uniformness
of the triangle. In other words, the higher the ratio, the better
the quality of the triangle. The ratio distributions of meshes
for a large molecule, AChE tetramer, and a relatively small
one, FAS2, are shown in Figure 5. TMSmesh and MSMS
meshes with two densities 2 and 10 vertex/Å2 are compared.
It is shown that at both low and high densities, the ratios of
TMSmesh meshes are clustered around 0.75. Comparatively,
at a low density of 2 vertex/Å2, the ratios of MSMS meshes
distribute more evenly in [0,1] (see the first and third rows
of Figure 5). At a high density of 10 vertex/Å2 (see the
second and the bottom rows of Figure 5), the distributions
of MSMS mesh ratios are improved and clustered around
0.65 that still indicates less uniform triangle clusters than
TMSmesh results; furthermore, at the region with a ratio
close to 0, TMSmesh also generates less percentage of such
poor quality triangles than MSMS. In addition, successful
applications (see the following subsection) of all of our
meshes to boundary element simulations also indicate
improvement in mesh quality relative to MSMS mesh in the
sense of right topology (e.g., without single-element-con-
nected edges, isolated points), uniformness, and smoothness.

Finally, it is worth making a note of the molecular cavity
as explored by many other tools. TMSmesh does not
differentiate the outer and interior surfaces of cavities in the
meshing process. The cavities can be located through the
connectivities of the triangle elements, because an internal
cavity is a disjointed component of Gaussian surface (eq 1),

and its normal directions ∇φ(x) are inward. The same method
of finding internal cavities is used in GRASP.12

Application to Boundary Element Simulation of
Electrostatics. Similar to other surface generation softwares,
such as MSMS and LSMS, the surface mesh generated by
TMSmesh preserves molecular surface features and thus can
be applied to molecular visualization and analysis of surface
area, topology, and volume in computational structure
biology and structural bioinformatics. Furthermore, the goal
of this work is to extend applications to some advanced
mathematical modeling of biomolecules, which places de-
mands upon the quality and the rigorous topology of the
meshes.

In this work, we test the meshes in the usage of a boundary
element method to calculate the Poisson-Boltzmann elec-
trostatics. The BEM software used is a publicly available
PB solver AFMPB.32 MSMS meshes have already been used
in many previous boundary element PB works for smaller
molecules and have demonstrated to generate reasonable
results. Because LSMS mesh is built on cubic grid that can
deviate somehow from the curved molecular surface (unless
the grid space is small enough), we did not perform AFMPB
computation with LSMS mesh. Instead, the AFMPB results
from meshes of TMSmesh and MSMS are compared. Our
test cases, up to molecular size of 2X9XX (which is a
complex structure of the 70S ribosome bound to release
factor 2 and a substrate analog)30 due to the memory limit
of our machine, show that AFMPB can go through and
produce converged results with all of our meshes for the
molecules described in Table 2. However, the solver fails
for meshes directly obtained with MSMS for 30S ribosome
and larger molecules in Table 2, which is due to singularities
or incorrect topologies in MSMS meshes. Figure 6 shows
the solvation energies by AFMPB as well as the surface areas
and molecular volumes computed from the meshes of three
small molecules, GLY, ADP, and 2JM0 (see Table 1) using
different mesh densities. The figure indicates that BEM

Figure 4. Surface triangular mesh of the envelope protein of the dengue virus (PDB code 1K4R).31 The left-hand side is the
whole surface mesh, and the right-hand side is a close view of a selected part with a gap on the surface (surrounded by the
box). Because the structure is a shell, the inner surface of the other side of the shell is also shown through the gap. The mesh
density is 1 vertex/Å2.
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calculations work for all the meshes with different densities
produced by TMSmesh, and the mesh leads to convergent
and reasonable results for energy, area, and volume when
the mesh resolution is increased. This is reasonable because
the mesh converges to the implicitly defined Gaussian surface
with the increasing of the resolution. Figure 6 also shows
that the results computed by TMSmesh converge more
smoothly than those of MSMS as the number of triangles
increased. There are some discrepancies between the quanti-
ties calculated with TMSmesh and MSMS meshes, which

is due to the different definitions of molecular surface used
in the mesh tools.

It is known that BEM is a memory-saving approach to
solve the PBE for macromolecules, which indicates that a
combination of TMSmesh and a BEM solver, such as
AFMPB, is a promising way to handle large-scale molecular
systems for electrostatic calculations. As a representative
molecular system, we choose the complex structure 2X9XX
(see Table 1), which contains 510 727 atoms with a dimen-
sion of 270 × 392 × 384 Å (Figure 7). The molecular surface

Figure 5. Distributions of ratio of the shortest edge length to the longest edge length of each triangle produced by MSMS (left
column) and TMSmesh (right column). The first two rows are for AChE tetramer meshes with densities of 2 and 10 vertex/Å2,
respectively. The last two rows are for FAS2 meshes with densities of 2 and 10 vertex/Å2, respectively. A ratio of 1.0 corresponds
to an equilateral triangle.
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discretization using TMSmesh with a mesh density of 1
vertex/Å2 results in 3 693 500 triangular elements and
1 841 858 nodes. Figure 7 shows the computed electrostatic
potentials mapped on the molecular surface.

Conclusion

We have described a new method for molecular surface
meshing by a tracing surface technique. The implemented

software TMSmesh is shown as a robust tool for meshing
molecular Gaussian surfaces in the sense that: (1) It can
stably handle arbitrary sizes of molecules available in PDB
on a typical desktop or laptop machine, even for the not
“good” molecular structures (such as ones with strong atomic
clash) and (2) the generated mesh has good quality (smooth-
ness, uniformness, and topological correctness). The mesh
converges to the smooth Gaussian surface when the mesh
resolution increased and from which all the calculations of
electrostatic solvation energy, surface area, and molecular
volume show good convergence performance and reasonable
results. Therefore, in addition to usual applications of
molecular visualization and geometry analysis, the mesh is
also shown to be applicable for numerical simulations with
boundary element methods. Specifically, a combination of
TMSmesh and BEM solver opens a possible route to simulate
electrostatic solvation of large-scale molecular systems on
a desktop computer.

In order to simulate more complicated and wider ranges
of biophysical processes using a variety of numerical
techniques and modeling approaches, the current meshing
method needs further improvements. First, efficiency seems
to be the current bottleneck in some possible applications
where the mesh needs to be either generated for large systems
or generated frequently, such as in multiple-conformational
analysis, BEM-based implicit solvent MD simulations33,34

(whereas in some finite difference-based MD simulations,35

surface meshing is not required), or elastic modeling of

Figure 6. Area (first row), volume (second row), and solvation energy (third row) for GLY (left column), ADP (middle column),
and 2JM0 (right column).

Figure 7. Electrostatic potential surface of the complex
structure 2X9XX calculated with AFMPB32 using a surface
mesh density 1 vertex/Å2.
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conformational changes. Second, surface mesh smoothness
needs to be further improved. Third, molecular volume mesh
generation based on surface mesh is required for some finite
element types of simulations. In addition, in the case of
higher order numerical computations, the Gaussian surface
may need to be discretized more accurately using curved
elements. It would be convenient to generate curved elements
by small modification of TMSmesh, because the method
produces an abundance of trace information in the meshing
procedure.

Finally, it is worth a mention regarding PB calculations.
It is hard to conclude so far which surface specification is
the best for biophysical studies due to being complicated by
some other factors (like the atomic radii) in the setup of a
PB calculation that can also affect the final results. Likewise,
the Gaussian surface model and the meshing approach
adopted in this work for PB electrostatic calculations will
need further systematic studies and comparisons with experi-
ments or other computational methods.
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Abstract: The importance of the nonelectrostatic component of the embedding potential is
investigated by comparing the complexation induced shifts of the iso-g obtained in embedding
calculations to its supermolecular counterparts. The analyses are made in view of such multilevel
simulations, for which supermolecular strategy is either impractical or impossible, such as the
planned simulations for the whole enzyme ferredoxin oxidoreductase. For the biliverdin radical
surrounded by a few amino acids, it is shown that the embedding potential comprising only
Coulomb terms fails to reproduce even qualitatively the shifts evaluated from supermolecular
calculations. The nonelectrostatic component of the exact embedding potential is a bifunctional
of two electron densities [Wesolowski and Warshel, J. Phys. Chem. 1993, 97, 8050; Wesolowski,
Phys. Rev. A 2008, 77, 012504]. Therefore we analyze in detail both the quality of the
approximant for the bifunctional and the importance of the choice of the electron densities at
which it is evaluated in practical calculations.

Introduction

Multilevel techniques in numerical simulation apply the
embedding potential to couple the subsystem described at
the quantum mechanical level with its environment described
using simpler descriptors. If the quantum mechanical treat-
ment of the whole system under investigation is impractical
or impossible, then such techniques are the only options
available. Such approaches are frequently referred as quan-
tum mechanical/molecular mechanical (QM/MM)1 and are
widely applied in simulation of biomolecules,2,3 materials,4

liquids,5 solids,6,7 and interfaces,8 for instance. The embed-
ding potential, i.e., the potential added to the potential in
the environment-free case, υ0(rb), is commonly represented
by the electrostatic potential (atomic units are applied in all
the equations given in the present work):

The convention used in eq 1 indicating that the embedding
potential is a functional of the two electron densities FA (the
electron density of the embedded system) and FB (the electron
density of the environment) and is used for the sake of the
subsequent discussions. Note that the embedding potential
given in eq 1 does not depend on FA, i.e., the electron density
of the embedded system. In practice, the second term
representing the classical Coulomb electron-electron repul-
sion is evaluated using truncated polycenter multipole
expansion. Especially simple is the case of the expansion
truncated to monopoles, which leads to a very efficient
computational method where the nuclear and monopole
expansion charges can be bunched together giving rise to a
set of distributed effective charges.

The potential given in eq 1 does not take into account the
nonelectrostatic effects on the electronic structure of the
embedded species which arise from the Pauli exclusion
principle (see ref 9 for discussion of this issue in a model
system). If such effects cannot be neglected, then the
straightforward solution is to add to the electrostatic potential
a nonlocal component consisting of projection operators (or
simplified molecular pseudopotentials),10 which hinges on

* Corresponding author. E-mail: tomasz.wesolowski@unige.ch.
Telephone: 041223796101.

υemb(Coulomb))
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B ( rb) + ∫ FB( rb′)
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the availability of the orbitals for the environment. In
multilevel simulations, such as QM/MM, etc., especially if
the target is not a property directly related to the electronic
structure but to the potential energy surface, the nonelec-
trostatic component of the exact embedding potential is
frequently neglected, resulting in an inexpensive computa-
tional approach. In such a case, the deficiencies of electrostatic-
only embedding potentials can be corrected by special terms
added to the final expression for the total energy.11-15 Such
corrections are, however, strongly system and method
dependent as pointed out by several authors. For instance,
the authors of a recent review state that, “QM/MM calcula-
tions are not yet black-box procedures”,16 and the authors
of ref 17 conclude that “...the need to partition the complete
system into regions treated at different levels of theory, and
to allow these regions to interact, creates two significant
problems. First is the treatment of the QM/MM boundary,
as it is often necessary to place this boundary across covalent
bonds. Second is the parameterization of the hybrid system
Hamiltonian.” Several authors reported problems, such as
excess polarization of the embedded subsystem by the
environment, when the embedding potential comprises only
electrostatic terms.18-20 Specific numerical problems arising
from neglecting nonelectrostatic terms in the embedding
potential, especially if the basis set used to construct
embedded orbitals extends into the environment, were also
reported.21-23 In numerical simulations aiming at obtaining
properties of embedded systems, which are other than
ground-state energy, the large basis sets are frequently
indispensable. Therefore, the quality of the calculated values
depends directly on the accuracy of the used embedding
potential. The pragmatic solution made for the ground-state
energy, i.e., as adding a correction term directly to the
energy, is less straightforward for other observ-
ables. To correct errors for such quantities, the cure must be
applied to the embedding potential, as it determines the
quality of the calculated electronic structure.

The frozen-density embedding theory (FDET)24-28 pro-
vides a formal basis for computational methods (besides our
own work see also other representative papers)29-33 in which
both the energy as well as the electronic properties are
evaluated in a self-consistent manner. Below, we outline the
basic elements of the frozen-density embedding theory:

• Basic variables. The total investigated system is char-
acterized by two quantities: the density FB(rb), which for
a given electronic problem is a frozen function, and the
density FA(rb), which is represented using auxiliary
quantities, such as occupied orbitals of noninteracting
reference system {φA

i (rb)},24 occupied and unoccupied
orbitals of noninteracting reference system,25 interacting
wave function,27 or one-particle density matrix.28

• Constrained search. The density FA(rb) is obtained by
performing the following search:

• Performing the constrained search by modifying the
external potential. The search is conducted in practice
by solving the following equation:

where Ĥo is the environment-free Hamiltonian, and the
υ̂emb(rb) has the form of a local potential (υemb

eff (rb)), which
is determined by the pair of densities FA(rb) and FB(rb),
hence orbital-free embedding.

• Orbital-free embedding potential. The form of the
dependence of the embedding potential on the densities
FA(rb) and FB(rb) depends on what QM descriptor is used
as the auxiliary quantity for FA(rb) and is given in
respective publications.24,27,28 For the following descrip-
tors: orbitals of noninteracting reference system, a wave
function of the full configuration interaction form, and
one-particle density matrix, the orbital-free embedding
potential reads:

The correspondence given in eq 4 involves density
functionals known in the Kohn-Sham formulation34 of
density functional theory,35 the functional of the
exchange-correlation energy (Exc[F]), and the functional
of the kinetic energy in a noninteracting system (Ts[F]).
The pair of functional derivatives of the functional Ts[F]
arises from from nonadditivity of this functional and
represents a potential denoted as υt

nad[FA, FB](rb) in the
present work.

In this context, it is useful to relate the frozen-density
embedding theory to the subsystem formulation of density
functional theory (SDFT)36,37 and to the recently developed
partition density functional theory (PDFT).38 Both SDFT and
PDFT lead to the exact ground-state electron density and
the energy of the whole investigated system an alternative
way to the conventional Kohn-Sham framework. In SDFT,
the charges of each subsystem are assumed to be integral
(similarly as in FDET), whereas fractional charges of
subsystems are allowed in PDFT. The FDET targets not the
ground-state electron density of the total system but the
density minimizing the Hohenberg-Kohn energy functional
for the total system with the presence of constraints. FDET,
therefore, can lead to the same total ground-state density as
SDFT and Kohn-Sham DFT or PDFT, only when for
particular constraints26 (see also below). In the case of two
subsystems, SDFT is based on the following variational
principle:

where the search is performed among subsystem densities
which are pure-state noninteracting υ-representable. The
sufficient condition for reaching the exact ground-state

Eemb[FB] ) min
FAg0

EHK[FA + FB] for ∫FA( rb)d rb ) NA

) min
FgFBg0

EHK[F] for ∫FB( rb)d rb ) NB

(2)

(Ĥo + υ̂emb)ψ ) Eembψ (3)

Vemb
eff [FA, FB; rb] ) υext

B ( rb) + ∫ FB( rb′)
| rb′- rb|

d rb′ +
δExc[F]

δF |
F)FA+FB

-

δExc[F]

δF |
F)FA

+
δTs[F]

δF |
F)FA+FB

-
δTs[F]

δF |
F)FA

(4)

Eo ) min
FAg0,FBg0

EHK[FA + FB]

for ∫ FA( rb)d rb ) NA, ∫ FB( rb)d rb ) NB (5)
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density in SDFT is that it can be decomposed as a sum of
two pure-state noninteracting υ-representable densities com-
prising an integer number of electrons NA and NB (see the
discussions in ref 26). FDET does not target the ground-
state of the total system but the density, which minimizes
the total ground-state energy in presence of the following
constraint:

which is given in advance.
The total density obtained in FDET (eq 2 is, therefore,

not equal to the exact ground-state density except for a
particular case, i.e., when the difference between Fo

tot(rb) and
the assumed FB(rb) is representable using one of the auxiliary
descriptors mentioned above: orbitals of the noninteracting
reference system,24 interacting wave function,27 or one
particle density matrix.28 On the virtue of Hohenberg-Kohn
theorems, FDET can lead only to the upper bound of the
ground-state energy:

Any numerical implementation of FDET can be easily
converted to methods solving coupled Kohn-Sham-like
equations in SDFT. In fact, the first numerical implementa-
tion of SDFT applicable for molecular systems used the
“freeze-and-thaw” cycle,39 which was applied in a number
of subsequent studies (see for instance refs 40-42). In the
original numerical studies based on SDFT concerning atoms
in solids36,37 and in the recent numerical implementation of
SDFT for molecular liquids,43 the coupled Kohn-Sham
equations are solved simultaneously. We have also shown
recently that the “freeze-and-thaw” cycle can be performed
simultaneously with displacing nuclear position accelerating
the SDFT-based geometry optimization.44 The “freeze-and-
thaw” cycle to solve the coupled Kohn-Sham like equations
is used by us in methodological studies on approximants to
the bifunctional of the nonadditive kinetic potential Vt

nad[FA,
FB] (see for instance refs 45-47) or in preparation stages
for large-scale simulations, in which the search given in eq
2 is performed for smaller model systems in order to establish
the adequacy of the simplified FB(rb) in large-scale simulations.

If a noninteracting reference system is used to perform
the search given in eq 2, the corresponding orbitals (φi

A) are
obtained from the following Kohn-Sham-like equations (eqs
20-21 in ref 24):

where υemb
eff [FA, FB; rb] is given in eq 4.

The effectiveness of methods based on eq 8 for the
studying changes in the electronic structure arising due to
the interactions between the embedded system and its
environment was demonstrated for: vertical excitation
energies,25,48 electron spin resonance (ESR) hyperfine cou-
pling constants,49,50 ligand-field splittings of f-levels in
lanthanide impurities,51 NMR shieldings,52 dipole and quad-

rupole moments, electronic excitation energies, and frequency
dependent polarizabilities.53

In multilevel simulations based on FDET, FB is an assumed
quantity, which can obtained following various approaches.
Since the electron density is a well-defined quantity also in
the macroscale, it is even possible to generate FB without
using any quantum chemical approach.54 A natural choice
for FB is to use Kohn-Sham equations to generate it for the
isolated environment and to use it for generating the
embedding potential. Such procedure does not take into
account the electronic polarization of the environment by
the embedded subsystem. For this reason such density and
embedding potential are labeled as nonrelaxed. If the “freeze-
and-thaw” procedure55 is used to generate FB, which together
with the optimal FA minimizes the energy of the whole
system, then the corresponding quantities are labeled as
relaxed.

Our own numerical experience concerning the applicability
of eq 1 in embedding calculations shows invariably that it
leads frequently to qualitatively wrong or erratic results,
especially if other properties than energy are investigated
(for ligand field splitting of the f-levels for lanthanide
impurities in solids see ref 51, for redistribution of electron
density in charged intermolecular complexes see ref 56, for
electron density and total energy in intermolecular complexes
see ref 45, for excitation energies see ref 25, for instance).
The erratic results obtained using the electrostatic-only
embedding potential arise from the fact that any variational
method neglecting nonelectrostatic terms neither assures the
proper variational limit in the sense of the second Hohen-
berg-Kohn theorem nor takes into account the antisymmetric
character of the wave function for the whole system. The
present work represents an extension of such studies. A
systematic account of the flaws of the electrostatic-only
embedding potential is provided for yet another quantity
directly related to the electronic structuresthe values of iso-g
for an embedded radical molecule. The g-tensor is an
important parameter of ESR spectroscopy, and its analysis
is used as a supplementary tool to elucidate the protonation
state of a radical in the enzyme’s active center.57 The protein
provides both the steric constraints affecting the geometry
of the radical as well as the electronic environment (long-
range electrostatic as well as short-range Pauli repulsion),
which affect the observed g-tensor. Modeling g-tensor must
take a proper account of these two types of effects, and the
FDET methods are especially designed to study the electronic
effects (for a representative study see ref 50). The secondary
aim of this study is the analysis of the errors in calculated
environment-induced shifts of iso-g which can be attributed
to the use of approximate density functional for the nonad-
ditive kinetic potential Vt

nad[FA, FB], i.e., the last two terms
in eq 4.

We have chosen to study a model system consisting of
the biliverdin IXa radical (BV) and a few amino acids of
the protein phycocyanobilin (PCYA) representing the nearest
neighbors of BV in the BV-PCYA complex. The g-tensor
of BV has extremely small anisotropy. It should be noted
that conventional ESR cannot resolve the components of
g-tensors with very small anisotropy (as those of organic

F g FB (6)

Eemb[FB] g Eo (7)

[-1
2

∇2 + υeff
KS[FA, rb] + υemb

eff [FA, FB; rb]]�i
A ) εi

A�i
A

i ) 1, NA (8)
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radicals), but recent developments in high-field ESR allow
one to determine the components of even such g-tensors and
to use them in the interpretation of biochemical data.57 It is
known that PCYA catalyzes the reduction of BV to PCYA,
the precursor of biliprotein chromophores found in phyco-
bilisomes. The present work represents the preparatory stage
of the project aimed at studying the whole protein-radical
complex by means of multilevel type of simulations based
on FDET. Two numerical model related issues: the adequacy
of the used the approximant for the bifunctional of the
nonelectrostatic components of the embedding potential and
the adequacy of the choice for FB are, therefore, at the focus
of the present work.

In order to obtain the absolute values of iso-g as and the
environment induced shifts of this quantity [∆iso-g ) iso-
g(BV + environment) - iso-g(BV)], the calculations based
on either embedding or supermolecular strategy are feasible
for the investigated model system, which is rather small. The
possible advantages of using the FDET-based embedding
calculations over the supermolecular ones lie not only in
reducing the computational costs. If the shifts arise from
nonbonding interactions between the embedded molecule and
its environment, then the quality of the shifts obtained from
FDET strategy can be expected to be better than their
supermolecular counterparts for the reasons addressed in
more detail below. The quality of the results obtained in both
the Kohn-Sham and the embedding calculations depend on
such common factors as: (a) the molecular model of the real
system (size of the model and coordinates of atoms not
available from experiments), (b) the approximant for the
exchange-correlation functional, (c) the treatment of rela-
tivistic effects (the spin-orbit coupling in particular), and
(d) the basis set. As far as the environment induced shifts
are concerned, however, their quality in supermolecular and
embedding calculations is determined by different factors.
In the supermolecular case, the shift is the difference between
values obtained from two independent Kohn-Sham calcula-
tions. As a result, the errors in iso-g might cumulate or
cancel. In the embedding case, the calculated shift arises from
the addition of the embedding potential to the effective
potential corresponding to the system without any environ-
ment. The errors in the shifts are, therefore, determined
mainly by the quality of the embedding potential given in
eq 4. Due to its first-principles based origin, the quality of
the embedding potential used in practice is determined by
only two factors: the chosen frozen electron density (FB) and
the used approximant for the nonadditive kinetic potential
(the last two terms in eq 4). The importance of the first factor
can be easily monitored by performing the “freeze-and-thaw”
calculations on model systems. Concerning the orbital-free
embedding potential expressed as the functional of FA and
FB, its medium- and long-range part is known exactly
(electrostatics) and can be expected to dominate if the
embedded molecule is surrounded by noncovalently bound
polar molecules. Since the errors in the shifts of the properties
related directly to the electronic structure, i.e., to the
embedded orbitals and their energies, are determined only
by the accuracy of the approximants to the nonadditive
kinetic- and exchange-correlation potentials, one can

expect that, whenever the environment includes polar or
charged molecules represented exactly in the orbital-free
embedding potential given in eq 4, the shifts obtained from
FDET-based calculations surpass in accuracy the ones
derived using their supermolecular counterparts.

The model environment of BV considered in the present
work is the same as the one investigated earlier in the study
aimed at determination of the protonation state of PCYA-
bound BV,57 where the supermolecular calculations were
used to interpret experimental data. We use the same model
for different purposes: (a) to explore the possibility of
replacing supermolecular calculations by embedding ones
for these types of analyses and (b) to determine the necessary
conditions (choice of the frozen density, number of centers
to expand the embedded orbitals using atomic bases, pos-
sibility to neglect nonelectrostatic components of the exact
orbital-free embedding potential) for the optimal embedding
calculations, i.e., assuring the smallest of the deviations from
the supermolecular results at the largest reduction of the
computational efforts.

Computational Details

The three considered protonation states denoted with
RACDδ•+, ACDδ•, ACD•- are shown in Figure 1. In the
label, a big letter indicates a protonated nitrogen site in the
pyrrole ring (A, B, C, or D), a Greek letter (R or δ) denotes
a protonated carbonyl oxygen site, and the + or - denote
the charge of the embedded species.

Twoclustermodelsof theenvironmentof thePCYA-bound
BV shown in Figure 2 are considered: the smaller (EHD)
and the larger (EHDYQ) (the amino acids are referred to
with commonly used one letter codes). The EHDYQ cluster
comprises amino acids: GLU76, HIS88, ASP105, TYR212,
and GLN216 in their neutral form taken from the 2D1E
structure deposited in the Protein Data Bank (PDB).58 The
EHD cluster comprises GLU76, HIS88, and ASP105 (all
polar). These three amino acids are chosen because of their
proximity to the carbonyl oxygen atoms on the pyrolle rings.
All of them are capable of hydrogen bonding to the
protonated BV and are thus critical for determining the
locations of protons in BV. They are expected to affect
the g-tensor of the protein-bound BV. The amino acids of
the EHD cluster are also believed to be essential in catalysis
as proton donors.59 Concerning the larger cluster (EHDYQ),
it comprises additionally to two polar amino acids TYR212
and GLN216. They are near the R carbonyl oxygen atom of
the pyrrole ring and far from the δ carbonyl oxygen atom.

The position of the hydrogen atoms, which is not available
in the PDB structure, was generated initially using “Accelrys
DS Visualizer suite”60 and subsequently refined using the
nonrelativistic Kohn-Sham LDA calculations, with the STO-
type triple-� with polarization functions basis sets (TZP label
in the ADF version 2009.01 basis set library). The Cartesian
coordinates are provided in the Supporting Information.

The g-tensor, the main property investigated in the present
work, is related to the magnetic moment of an electron as:
µ ) -g�S where S is the electron spin, and � the bohr
magneton. The g-value depends on the particular magnetic
species under consideration.65 The principal components of
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the g-tensor together with the hyperfine tensor A specify the
positions and the splittings of the lines in ESR spectra,
depending on the direction of the magnetic field relative to
the molecular axis. The spectral anisotropy is completely
specified by three g-values (gxx, gyy, gzz) and three hyperfine
constants (Axx, Ayy, Azz). The isotropic g-value (iso-g), which
is discussed throughout the present work, is the average of
the principal g-values: iso-g ) 1/3(gxx + gyy + gzz).

In this study, the molecular g-values are calculated based
on the solutions of the relativistic Kohn-Sham equations in
the “spin-orbit coupling containing zeroth order regular
approximation (ZORA) to the Dirac equation”.66-69 In
ZORA, the spin-orbit coupling interaction (which is for
many systems the most important factor for shifting the

g-tensor components away from the free-electron value ge)
and other relativistic effects are taken into account variation-
ally. The spin-restricted version of the spin-orbit including
ZORA calculations,70 which is computationally less expen-
sive than the spin-unrestricted version71 and thus more
attractive for the study of average and big sized systems,
was used. The method introduced in ref 70 combining ZORA
with a single-orbital reference technique to deal with gauge
dependency for open-shell doublet systems was applied.

The Becke-Perdew exchange-correlation functional72,73

is used in both supermolecular and embedding calculations.
This choice is motivated by its reported reliability in the
calculation of the ESR parameters.70

The recently developed approximant to the nonadditive
kinetic energy bifunctional (NDSD),46 which satisfies the
uniform electron gas limit and the asymptotic form of the
exact bifunctional for the nonadditive kinetic potential at FA

f 0 and ∫FBdrb) 2, was used. It takes the following form:

where

and where: sB ) (|∇FB|)/(2(3π2)1/3FB
4/3), sB

min ) 0.3, sB
max )

0.9, FB
min ) 0.7, and λ ) 500.

Figure 1. (a) The six positions in the BV IXa radical that can be protonated: R, δ, A, B, C, and D. The three considered protonation
states: (b) RACDδ•+, (c) ACDδ•, and d) ACD•-.

Figure 2. BV IXa in the RACDδ•+ protonation state (for the
convention, see Figure 1) in ferredoxin oxidoreductase rep-
resented by five amino acids: GLU76, HIS88, ASP105,
TYR212, and GLN216. T̃s

nad(NDSD)[FA, FB] ) 3
10

(3π2)2/3 ∫ ((FA + FB)5/3 -

FA
5/3 - FB

5/3)d rb + ∫ f(FB, ∇FB) · FA( rb) · υt
limit[FB]( rb)d rb (9)

υt
limit[FB]( rb) ) 1

8

|∇FB|2

FB
2

- 1
4

∇2FB

FB
(10)

f(FB, ∇FB) ) (exp(λ(-sB + sB
min)) + 1)-1 ×

(1 - (exp(λ(-sB + sB
max)) + 1)-1) ×

(exp(λ(-FB + FB
min)) + 1)-1(11)
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The STO-type DZP(ZORA) basis set from the ADF
version 2009.01 package’s basis set library,74 that comprises
a valence double-� basis set with one set of polarization
functions, is used in the evaluation of g-tensor in both
embedding and supermolecular calculations. All reported
calculations are performed using the ADF version 2009.01
package.74 Considering the atomic basis sets, it is important
to point out a different significance of the choice of the
number of centers used to construct molecular orbitals in
supermolecular and in embedding calculations. In the su-
permolecular calculations, the number of centers is rarely
considered an issue as they coincide with the positions of
nuclei, except for some particular types of calculations. For
instance, the “ghosts” are used commonly to evaluate the
basis set superposition error by means of the counterpoise
procedure.61 In embedding calculations, it is natural to restrict
the of centers of atomic basis sets to the nuclei of the
embedded species. This is one of the sources of great
computational savings in the embedding strategy after all.
Addition of atomic sets localized in the environment might,
however, significantly affect the numerical results of the
embedding calculations.45,46,62,63 Since eq 8 is based on
variational principle (eq 2), any additional basis functions
used to construct the embedded orbitals can only bring the
results closer to the variational limit. The supermolecular
expansion is, therefore, used as a standard in development/
testing approximants for υt

nad[FA, FB].39,45,64 The use of full
set of atomic centers, i.e., that in the embedded system and
in the environment, is, however, not practical for large-scale
simulations but is frequently applied in the preliminary stage
of a simulations to chose the minimal size of the basis set
and the centers assuring numerical stability for the results.26

In the present work, the considered systems are rather small
and both variants of embedding calculations are feasible.
They are referred to as monomer and supermolecular
expansion, respectively.

Finally, it is important to underline that to investigate the
possibility of replacing the supermolecular calculations by
the embedding ones using the considered embedding poten-
tials, it is crucial that the embedding results and their
supermolecular counterparts are obtained using the same:
type of atomic basis sets, centers of the atomic basis sets,
numerical grid, approximant for the exchange-correlation
potential, and the external potential (geometry of the cluster).
The particular choices for made for these quantities is of
secondary importance from the point of view of the
comparisons made in this work as long as the common
parameters are the same in supermolecular and embedding
calculations. The comparisons between the embedding and
supermolecular results are made for several systems (various
protonation states of BV and sizes of the environment) to
ensure that the results are not accidental and to cover various
possible interaction modes of a radical molecule with a
protein. Nevertheless, some choices were made arbitrarily
such as that for the approximant for the exchange-correlation
potential, the choice of the protonation state of the amino
acids, and the basis set used in most of the analysis. It is
also important to underline that despite the fact that the
investigated models are constructed based on the BV-PCYA

complex, we do not attempt to reproduce quantitatively the
experimental g-tensors because the considered models are
most likely too small to be used for such purposes.

Results and Discussions

Throughout the results section, the environment induced
shifts of the iso-g obtained from the embedding calculations
are compared with the shifts obtained from the supermo-
lecular strategy. The absolute or relative value of the
difference: δ∆iso-g ) ∆iso-g(supermolecule) - ∆iso-g(embedding)

is used in all discussions concerning the accuracy of various
embedding potentials considered in the present work. Note
that the difference δ∆iso-g is equal to the difference between
the absolute values of iso-g calculated in supermolecular and
embedding strategies (δiso-g ) iso-gsupermolecule - iso-
gembedding).

Table 1 collects the iso-g and ∆iso-g values obtained using
nonrelaxed FB for the three protonation states of BV in
various environments. The reference Kohn-Sham results are
also given for comparison. In three among four investigated
systems, eq 1 leads to qualitatively wrong shifts (results
obtained with monomer expansion). The situation is even
worse when supermolecular expansion is used. The order
of orbital levels is wrong, and no self-consistent solutions
of eq 8 can be obtained. The situation is greatly improved if
the full embedding potential given in eq 4 is used. The results
of supermolecular and monomer expansion are quite similar

Table 1. Iso-g and ∆Iso-g ) Iso-g(BV + Environment) -
Iso-g(BV) of BV in Various Environments Calculated with
Eqs 1 and 4 and Nonrelaxed Density of the Environmenta

methodb environment
protonation
state of BV iso-g

∆iso-g
(ppm)

embedding: eq 1c EHD RACDδ•+ 2.002810 -43
embedding: eq 1d EHD RACDδ•+ NCe NCe

embedding: eq 4c EHD RACDδ•+ 2.002905 52
embedding: eq 4d EHD RACDδ•+ 2.002900 47
Kohn-Shamc none RACDδ•+ 2.002853 0
Kohn-Shamd none RACDδ•+ 2.002849 0
Kohn-Sham EHD RACDδ•+ 2.002928 75
embedding: eq 1c EHDYQ RACDδ•+ 2.002811 -42
embedding: eq 1d EHDYQ RACDδ•+ NCe NCe

embedding: eq 4c EHDYQ RACDδ•+ 2.002904 51
embedding: eq 4d EHDYQ RACDδ•+ 2.002898 45
Kohn-Shamd none RACDδ•+ 2.002848 0
Kohn-Sham EHDYQ RACDδ•+ 2.002982 129
embedding: eq 1c EHD ACDδ• 2.003639 50
embedding: eq 1d EHD ACDδ• NCe NCe

embedding: eq 4c EHD ACDδ• 2.003742 153
embedding: eq 4d EHD ACDδ• 2.003745 156
Kohn-Shamc none ACDδ• 2.003589 0
Kohn-Shamd none ACDδ• 2.003592 0
Kohn-Sham EHD ACDδ• 2.003781 192
embedding: eq 1c EHD ACD•- 2.004471 -101
embedding: eq 1d EHD ACD•- NCe NCe

embedding: eq 4c EHD ACD•- 2.004667 95
embedding: eq 4d EHD ACD•- 2.004661 89
Kohn-Shamc none ACD•- 2.004572 0
Kohn-Shamd none ACD•- 2.004564 0
Kohn-Sham EHD ACD•- 2.004494 -78

a Kohn-Sham results for the isolated and complexed BV are
also given for reference. b STO-type DZP(ZORA) basis set was
used. c Monomer basis set. d Supermolecular basis set. e Self-
consistent cycle did not converge.
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in all cases. The complexation induced shifts obtained from
embedding calculations with eq 4 reproduce qualitatively the
reference values from supermolecular calculations in three
considered cases but lead to qualitatively wrong shifts for
ACD•-. According to the discussion in the Introduction, these
discrepancies might originate from the choice of FB or from
the fact that an approximated functional was used for υt

nad[FA,
FB]. We note, however, that for embedded species which
are electrically neutral, the agreement between the reference
data and the shifts from the embedding calculations using
the potential given in eq 4 is the best (156 vs 192 ppm).
This indicates that the lack of relaxation might lie at the
origin of the large discrepancies in the other cases.

To investigate this interpretation, the shifts were evaluated
using the relaxed FB which is obtained in the “freeze-and-
thaw” procedure. They are collected in Table 2 which
parallels Table 1. The relaxed FB takes into account the
electronic polarization of the environment by the embedded
species and corresponds to the variational minimum of the
total energy functional expressed using the applied ap-
proximated density functionals (SDFT). On the practical side,
we notice that the “freeze-and-thaw” procedure converges
rapidly and that the shifts do not change noticeably after
completion of just one cycle (data not shown). Let us start
with the worst case analyzed previously, i.e., ACD•-. Indeed,
the qualitatively wrong complexation induced shift obtained
in the absence of relaxation (+89 vs -78 ppm reference
value) becomes negative (-164 ppm). The embedding
potential of eq 4 leads to the correct direction of the effect
but overestimates its magnitude. Removal of the basis
functions localized in the environment brings the numerical
result even closer to the supermolecular reference (-124

ppm). Similarly as in the nonrelaxed FB case, the differences
between the shifts obtained with monomer and supermo-
lecular basis sets are significantly smaller than the magnitudes
of the shifts. The situation is quite different if the electrostatic-
only (eq 1) embedding potential is used. Similarly as in the
previously considered nonrelaxed case, it can be noticed that
the electrostatic-only embedding potential cannot be applied
with supermolecular basis sets. The results obtained using
the monomer expansion with the electrostatic-only embed-
ding potential (the situation most closely resembling the
typical QM/MM computational protocol) are reasonable, but
they are systematically worse than the ones obtained using
the full embedding potential.

As far as the basis set effect on the obtained complexation
induced shifts is concerned, it is worthwhile to notice that
the two previously considered choices for the basis sets
(monomer or supermolecular expansion) represent two
extremes in practical calculations. Most of the QM/MM
calculations do not employ the basis sets localized in the
environment. From the practical point of view, however, it
is more useful to analyze the numerical stability of the shifts
obtained from embedding calculations if only the monomer
expansion is considered but the atomic basis sets change.
The following section addresses this issue for one case: BV
in the RACDδ•+ protonation state in the EHD environment.

We start with noticing that, the complexation induced
shifts of iso-g obtained from supermolecular calculations are
not affected by the change of the basis set significantly (see
Table 3). The basis set superposition error on ∆iso-g obtained
from the supermolecular strategy is negligible reaching 3
ppm at most (data not shown). Embedding calculations using
Coulombic embedding potential appear to be very sensitive
to the choice of the basis set. With the monomer expansion,
the shifts equal to 35 and 23 ppm for STO-DZ and STO-
DZP, respectively. These values represent less than 50% of
the reference shifts (72 or 75 ppm). Reducing the size of
the basis set on each atom in the supermolecular expansion

Table 2. Iso-g and ∆Iso-g ) Iso-g(BV + Environment) -
Iso-g(BV) of BV in Various Environments Calculated with
Eqs 1 and 4 and Relaxed Density of the Environmenta

methodb environment
protonation
state of BV iso-g

∆iso-g
(ppm)

embedding: eq 1c EHD RACDδ•+ 2.002876 23
embedding: eq 1d EHD RACDδ•+ NCe NCe

embedding: eq 4c EHD RACDδ•+ 2.002919 66
embedding: eq 4d EHD RACDδ•+ 2.002919 66
Kohn-Shamc none RACDδ•+ 2.002853 0
Kohn-Sham EHD RACDδ•+ 2.002928 75
embedding: eq 1c EHDYQ RACDδ•+ 2.002883 30
embedding: eq 1d EHDYQ RACDδ•+ NCe NCe

embedding: eq 4c EHDYQ RACDδ•+ 2.002918 65
embedding: eq 4d EHDYQ RACDδ•+ 2.002917 64
Kohn-Sham EHDYQ RACDδ•+ 2.002982 129
embedding: eq 1c EHD ACDδ• 2.003629 40
embedding: eq 1d EHD ACDδ• NCe NCe

embedding: eq 4c EHD ACDδ• 2.003706 117
embedding: eq 4d EHD ACDδ• 2.003689 100
Kohn-Shamc none ACDδ• 2.003589 0
Kohn-Sham EHD ACDδ• 2.003781 192
embedding: eq 1c EHD ACD•- 2.004347 -225
embedding: eq 1d EHD ACD•- NCe NCe

embedding: eq 4c EHD ACD•- 2.004448 -124
embedding: eq 4d EHD ACD•- 2.004408 -164
Kohn-Shamc none ACD•- 2.004572 0
Kohn-Sham EHD ACD•- 2.004494 -78

a Kohn-Sham results for the isolated and complexed BV are
also given for reference. b STO-type DZP(ZORA) basis set was
used. c Monomer basis set. d Supermolecular basis set. e Self-
consistent cycle did not converge.

Table 3. Basis Set Dependence of Iso-g and ∆Iso-g )
Iso-g(BV + EHD) - Iso-g(BV) Obtained in Embedding
Calculations and Supermolecular (Kohn-Sham)
Calculations

methoda basis set iso-g ∆iso-g (ppm)

Kohn-Shamc STO(DZ) 2.002959 72
Kohn-Shamc STO(DZP) 2.002928 75
embedding: eq 1b,c STO(DZ) 2.002871 -16
embedding: eq 1b,c STO(DZ+ghosts) NCd NCd

embedding: eq 1b,c STO(DZP) 2.002810 -43
embedding: eq 1b,c STO(DZP+ghosts) NCd NCd

embedding: eq 1b,d STO(DZ) 2.002922 35
embedding: eq 1b,d STO(DZ+ghosts) NCd NCd

embedding: eq 1b,d STO(DZP) 2.002876 23
embedding: eq 1b,d STO(DZP+ghosts) NCd NCd

embedding: eq 4b,c STO(DZ) 2.002946 59
embedding: eq 4b,c STO(DZ+ghosts) 2.002938 51
embedding: eq 4b,c STO(DZP) 2.002905 52
embedding: eq 4b,c STO(DZP+ghosts) 2.002900 47
embedding: eq 4b,d STO(DZ) 2.002959 72
embedding: eq 4b,d STO(DZ+ghosts) 2.002954 67
embedding: eq 4b,d STO(DZP) 2.002919 66
embedding: eq 4b,d STO(DZP+ghosts) 2.002919 66

a STO-type DZP(ZORA) basis set was used. b Results for BV in
the RACDδ•+ protonation state. c Nonrelaxed FB. d Relaxed FB.
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form STO-DZP to STO-DZ does not bring solution to the
problem of the lack of convergence in the electrostatic-only
embedding case.

The shifts obtained from embedding calculations with the
full embedding potential are significantly more stable
numerically and closer to the reference. With the monomer
expansion the corresponding shifts are 72 and 66 ppm, which
are also very close to the corresponding supermolecular
reference (72 and 75 ppm for STO-DZ and STO-DZP,
respectively). Moreover, adding the centers localized in the
environment does not affect the obtained shifts significantly.
The shifts obtained with four considered sets of basis
functions are scattered between 66 and 72 ppm.

The numerical results discussed so far show invariably
that the full embedding potential is indispensable for obtain-
ing numerically stable values of complexation induced shifts.
However, an important factor in embedding calculations
applying the potential given in eq 4 is the choice of the
electron density FB. Performing the full “freeze-and-thaw”
procedure (SDFT) is not practical in the case of large
environments, and a nature of multilevel simulations is that
additional approximations are introduced for FB, as in
methods based on FDET. In the following part, we focus on
the ACD•- case, where nonrelaxed electron density was
shown to be a very inappropriate choice for FB, as it leads
to a wrong sign of the complexation induced shift of iso-g.
Moreover, the difference between the results obtained using
the monomolecular and supermolecular expansion in embed-
ding calculations was the largest as well as the effect of
relaxation was also the largest in magnitude. We notice that
opposite to other complexes considered in the present work,
the embedded system was charged, and it was charged
negatively. This suggests attribution of the failure of non-
relaxed embedding calculations to the neglect of electronic
polarization and to the role of charge transfer between the
embedded radical and the environment or even some covalent
character of the bonding between the embedded species and
its environment. The analysis of the complexation induced
dipole moments in this systems supports the attribution of
the failure of nonrelaxed FB embedding calculations to the
missing electronic polarization (see Table 3). To support this
interpretation of the inadequacy of choosing nonrelaxed FB

for negatively charged environment of BV, the complexation
induced dipole moments collected in Table 4 are analyzed
below. The complexation induced shifts are the smallest (2.93
D) if both the embedded species and the environment are
not charged, i.e., for ACDδ•. In this case, the embedding
calculations reproduce quite reasonably the complexation
induced increase of the dipole moment (2.46 vs 2.93 D) but
only if relaxation is taken into account. It is worthwhile to
notice that despite such under performance in reproducing
the complexation induced dipole moments in the absence of
relaxation, the shifts of iso-g were very accurately reproduced
(153 vs 192 ppm see Table 1) even if nonrelaxed FB is used
in embedding calculations. This indicates that the quality of
the embedding potential does not affect all properties of the
embedded species in the same way. The choice of the
simplified method to obtain FB in large scale simulations
using eq 4 must, therefore, be subject of dedicated studies

depending on the system and the investigated property.
Interestingly, the complexation induced dipole moments are
only slightly larger for the two cases of cationic embedded
species is (3.07 and 3.94 D). Turning back to the ACDδ•-

case, i.e., where the choice of nonrelaxed FB was qualitatively
wrong for evaluation of ∆iso-g, we notice that the complex-
ation induced dipole moment is, indeed, the largest (7.10
D), and effect of the relaxation of FB on the calculated dipole
moment is the largest.

Conclusions

The applicability of the embedding strategy as an alternative
to supermolecular calculations was investigated using a small
model system comprising BV and a few amino acids of the
PCYA protein. The numerical results indicate clearly that
the nonelectrostatic components of the embedding potential
are indispensable. Without a nonelectrostatic component of
the exact embedding potential, the results of embedding
calculations are not reliable as the effect of the environment
on the investigated property (shift of iso-g) is described
erratically (strong dependence of the results on the basis sets)
and even qualitatively wrong. The magnitude of the change
in iso-g resulting from changing the protonation state of the
radical can be significant as estimated in this work and in
the work by Stoll et al.57 (a few hundreds of ppm). Such
effects on iso-g are significantly larger in magnitude than
the differences between supermolecular and embedding
results. Even larger effects on the magnitude of iso-g can
be expected to rise from the effect of protein on the
conformation of the radical. Both supermolecular or embed-
ding strategies can be, therefore, used to target these larger
effects. The present work indicates that if the nonelectrostatic
terms are taken into account by approximate density func-
tionals, then the embedding strategy can be considered as a
numerically efficient alternative. It is important to underline
that neither supermolecular nor embedding calculations are
likely to be used for interpretations of very small effects,
such as the shift of iso-g of BV resulting from protein
mutations which do not exceed 15 ppm.57 The effect is too
small to be reliably predicted by any type of calculations at
least for the mutants for which the data is available.

Table 4. Complexation Induced Dipole Moments (|∆µb| )
|µbBV+env. - µbBV - µbenv.|) from Embedding and
Supermolecular Calculations

methoda environment
protonation
state of BV |∆µb| (D)

Kohn-Sham EHD RACDδ•+ 3.07
embedding: eq 4b EHD RACDδ•+ 0.73
embedding: eq 4c EHD RACDδ•+ 2.18
Kohn-Sham EHDYDb RACDδ•+ 3.94
embedding: eq 4b EHDYD RACDδ•+ 1.16
embedding: eq 4c EHDYD RACDδ•+ 1.77
Kohn-Sham EHD ACDδ• 2.93
embedding: eq 4b EHD ACDδ• 0.93
embedding: eq 4c EHD ACDδ• 2.46
Kohn-Sham EHD ACD•- 7.10
embedding: eq 4b EHD ACD•- 1.27
embedding: eq 4c EHD ACD•- 5.87

a STO-type DZP(ZORA) basis set was used. b Nonrelaxed FB.
c Relaxed FB.
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Concerning practical calculations based on the frozen-
density embedding theory,24-28 the analytic form of the
nonelectrostatic components of the exact embedding potential
is unfortunately not known. Approximants must be used
instead. The present work shows that the currently known
approximants to these terms perform quite reasonably. The
embedding calculations can reproduce the 50-90% of the
reference shifts obtained using the supermolecular strategy.
The fact that the shifts are not perfectly reproduced indicates
that further improvements of the approximants for the kinetic
energy-dependent component of the embedding potential are
needed. The present work provides also important hints for
setting up a large-scale multilevel simulation based on FDET.
For the neutral and cationic amino acids interacting with BV,
using the nonpolarized electron density to evaluate the
orbital-free embedding potential is a reasonable approxima-
tion. For negatively charged amino acids, however, the
electronic polarization of the environment by the embedded
molecule must be taken into account. We underline that the
embedding calculations using the orbital-free embedding
potential lead to results which are numerically robust and
do not vary significantly with the basis sets, even if additional
basis sets centered on atoms in the environment are used in
construction of embedded orbitals.

Finally, we stress that the practical recommendations and
conclusions emerging from the present studies concerning:
weak basis set dependence, negligible effect of atomic basis
sets localized in the environment, reasonably good ap-
proximation of neglecting electronic polarization of neutral
and cationic amino acids in the environment, adequacy of
the NDSD approximant for the nonadditive kinetic energy
were drawn based on the analyses of shifts of the iso-g.
Investigation of other properties, the quality of which is
directly linked to the accuracy of the used embedding
potential, might lead to different recommendations. For
instance, the relative errors (deviation from the reference
supermolecular results) in the complexation induced dipole
moments obtained from embedding calculations do not
correlate well with the errors in the iso-g shifts despite the
fact that both errors are determined by the quality of the
used orbital-free embedding potential. According to our
numerical experience, the complexation induced dipole
moments are very sensitive to the variations in the embedding
potential. This is one of the reasons we use induced dipoles
in the methodological studies aimed at development or
validation of approximants for the nonadditive kinetic
potential.45-47
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Abstract: It is shown that a principal component analysis of a large set of internal coordinates
can be used to define a nonredundant set of delocalized internal coordinates suitable for the
calculation of harmonic vibrational normal modes. The selection of internal coordinates and the
principal component analysis provide large degrees of freedom in extracting a nonredundant
set of coordinates, and thus influence how the vibrational normal modes are described. It is
shown that long-range coordinates may be especially suitable for describing low-frequency global
deformation modes in proteins.

Introduction

The nuclear motion of atoms in a molecule can, within the
Born-Oppenheimer approximation, be determined by solv-
ing the nuclear Schrödinger equation, where the solution to
the electronic Schrödinger equation plays the role of a
potential energy surface (PES). Near a minimum on the PES,
the potential energy can be approximated by a second-order
Taylor expansion, and solutions to the nuclear Schrödinger
equation can be expressed as a product of solutions to the
one-dimensional harmonic oscillator problem. If the quantum
aspects of the nuclei are ignored, the motion of the nuclei
can be determined by solving the corresponding classical
vibrational equation. Harmonic vibrational analyses are, in
many cases, of sufficient accuracy for identifying unknown
species by comparing calculated vibrational spectra with
experimentally observed ones and also form the starting point
for more advanced treatment of anharmonic vibrations.1

The eigenvalues from the solution of the harmonic
vibrational equation are proportional to the vibrational
frequencies, and the associated eigenvectors are the normal
coordinates, often called normal modes. The vibrational
frequencies contain information regarding the curvature of
the underlying PES, and it is commonly assumed that the
directions of the normal modes associated with the lowest
vibrational frequencies can be used to search for low-energy
transition states connecting to other low-energy minima on

the PES.2 When applied to biomolecules, it has been
observed that low-frequency normal modes in many cases
can be used to rationalize even large-scale domain move-
ments in proteins.3-9 More recently, such low-frequency
normal modes have been used to bias molecular dynamics
simulations, with the purpose of simulating conformational
transitions that otherwise would be too slow to be compu-
tationally feasible.10 We note in passing that many of these
conclusions are based on normal modes calculated by elastic
network models,9 rather than atomistic force fields, but there
is substantial evidence that the two types of normal modes
are in reasonably good agreement with each other.11

While the (tangential) direction of a normal mode at a
stationary point is independent of the coordinates used for
expressing the vibrational problem, the atomic coordinates
for any finite displacement along a normal mode will depend
onthecoordinatesusedforsolving thevibrationalequation.12,13

Cartesian coordinates have been used almost exclusively,
since the vibrational problem in this case can be formulated
as a simple diagonalization of a mass-weighted force constant
matrix. When applied to systems with hundreds or thousands
of atoms, low-frequency modes often involve a large fraction
of all of the coordinates, and the degree of localization/
delocalization of a vibrational mode can be quantified in
terms of a localization or collectivity index.14 The vibrational
problem, however, can be solved in any nonredundant set
of coordinates,15 and in the present paper, we explore
whether it is possible to select other sets of coordinates that
allow a more concise description of, in particular, the low-
frequency vibrations in biomolecules like proteins. For small
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systems, there is a substantial amount of work reported for
quantum vibrational analyses in internal coordinates,16 while
the applications to larger systems are significantly more
scarce. Kamiya et al. have discussed how to efficiently
calculate the second derivative matrix in internal coordinates
from a parametrized energy function and use this to perform
vibrational analysis in selected sets of internal coordinates.17

Transformation from Cartesian coordinates to internal co-
ordinates for analysis purposes has also been discussed.18,19

Theory

The determination of vibrational normal coordinates from a
set of general coordinates goes back to the seminal work of
Wilson et al.,20,21 where a set of 3N - 6 nonredundant
internal coordinates were assumed to be available. Fogarasi
et al. introduced the use of natural internal coordinates for
geometry optimization,22 and several other groups have
generalized this idea to extract 3N - 6 nonredundant linear
combinations, often denoted delocalized internal coordi-
nates,23 from a large set of redundant primitive internal
coordinates.24-28 We will in the present paper use these
concepts to determine vibrational normal coordinates as a
linear combination of delocalized internal coordinates ex-
tracted from a (large) set of primitive internal coordinates.
Lower case bold symbols like a will, in the following, denote
a vector with a length given by the number of variables,
while a capital symbol like A denotes a matrix containing
all a vectors as columns.

We will assume a nonlinear system with N atoms and 3N
Cartesian coordinates contained in a vector x, and thus 3N
- 6 vibrational degrees of freedom. In Cartesian coordinates,
the classical kinetic and potential energy operators can be
written as in eqs 1-3,29 where the harmonic approximation
has been employed for the potential energy and dotted vectors
indicate time derivatives.

The system can alternatively be described by a set of K
internal coordinates q, where K g 3N - 6. The internal
coordinates will typically be bond stretch coordinates
(distance between two atoms), bending coordinates (angle
between three atoms), and torsional coordinates (dihedral
angle defined by four atoms) but may also be other types of
coordinates.30 A set of all possible stretch (S), bend (B), and
torsion (T) coordinates can be generated automatically from
a set of Cartesian coordinates by employing suitable atomic
radii for determining the bonding pattern,27,28 and such a
set will in the following be denoted the primitive coordinates.

Each internal coordinate qi is a function of the Cartesian
coordinates and can be Taylor expanded as shown in eq 4.

At a stationary point, only the first derivative of the internal
coordinates with respect to Cartesian coordinates is required
for transforming the kinetic and potential energy operators
to internal coordinates,12,31,32 which can be written in terms
of the Wilson B matrix and the corresponding (generalized)
inverse B-1 matrix.

The vibrational part of the B matrix is rectangular with
dimension (3N - 6) × 3N, where the remaining six vectors
describing overall translation and rotation can be determined
by the Eckart conditions.33 The kinetic and potential energies
transformed to internal coordinates are shown in eqs 9-11.

Determining the vibrational normal coordinates corresponds
to choosing a linear transformation L that simultaneously
makes Gm

-1 a unit matrix and Fq a diagonal matrix, which
is equivalent to finding the eigenvectors of the GmFq matrix
product.20,21

Since the Gm matrix is nondiagonal, the GmFq matrix is
nonsymmetric, but the problem can be symmetrized by
transforming the l coordinates by Gm

-1/2.34

The vibrational normal coordinates are defined by the
eigenvectors obtained by diagonalization of the Gm

1/2FqGm
1/2

matrix, where the square root of the eigenvalues λ is
proportional to the vibrational frequencies.35 The normal
coordinates defined by the u vectors can be back-transformed
to l coordinates by multiplying by Gm

1/2, where they are
given as a linear combination of internal coordinates q.

The square of the coefficients cki determines the contribution
of the internal coordinate qi to the (normalized) lk normal

2T ) ∑
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ẋimiẋi ) ẋtMẋ (1)
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mode. The normal modes can be further transformed to
Cartesian coordinates by eq 7, which must be done iteratively
as the B-1 matrix only describes the first-order change.36

We note that the normal modes are orthogonal in the u space,
but not in the l or x spaces.

For small systems (N < ∼100 atoms), it is usually possible
to select a nonredundant set (K ) 3N - 6) of primitive
coordinates manually. The requirement that the q coordinates
are nonredundant is equivalent to requiring that the Gm

matrix is nonsingular. In practical applications, a near-
singular Gm must also be avoided for numerical reasons, and
a heuristic criterion in terms of its determinant shown in eq
17 has been proposed.28

It should be noted that this criterion is rather conservative,
as satisfactory numerical accuracy can be obtained for
substantially smaller values of the Gm determinant; for
example, q coordinates corresponding to -log(|Gm|) ∼ 3(3N
- 6) can be handled without a significant loss of numerical
accuracy. The determinant of Gm is closely related to the
condition number, which has been used by Németh et al. as
a criterion for selecting primitive internal coordinates in
connection with geometry optimization.37

For systems with more than ∼100 atoms, it is often
difficult to define a set of primitive coordinates that does
not lead to a near singular Gm matrix. A redundant set of
internal coordinates (K > 3N - 6), however, may be
transformed into 3N - 6 linearly independent and K - (3N
- 6) dependent coordinates by a transformation matrix S
(assuming that the primitive coordinates span the full 3N -
6 vibrational space). The S matrix can be chosen to reflect
the molecular symmetry (if any) and is therefore often called
a symmetry matrix. The S matrix has dimension K × K, but
only the 3N - 6 linearly independent coordinates are of
interest; i.e., only the (3N - 6) × K elements of the S matrix
are significant. We will denote the symmetry coordinates by
d, and the transformation can be written as in eq 18.

A change in the nonredundant symmetry coordinates can be
transformed to a change in the primitive coordinates, as
shown in eq 19.

The vibrational analysis in eqs 9-15 carries directly over
to symmetry coordinates, where the 3N - 6 symmetry
coordinates d replace the 3N - 6 internal coordinates q. As
the symmetry coordinates are just fixed linear combinations
of the internal coordinates, the change corresponds to
replacing the B and B-1 matrices by their symmetry
transformed equivalent B′ and B′-1 matrices.

The corresponding Gm and Fq matrices expressed in sym-
metry coordinates will be denoted G′m and Fd.

There is considerable freedom in choosing the symmetry
matrix, but it should be chosen such that the resulting G′m
matrix is sufficiently nonsingular. One convenient way of
ensuring this is to define the symmetry matrix by the
eigenvectors of the G matrix in eq 22.

The G matrix in eq 22 is equivalent to the Gm matrix in eq
10 without the mass weighting and also enters the expression
for the B-1 matrix, eq 8. If the b vectors used for constructing
G in eq 22 are taken to be normalized, this is equivalent to
performing a principal component analysis (PCA) of the b
vectors.15,38 By selecting the 3N - 6 eigenvectors corre-
sponding to the largest eigenvalues, the determinant of the
G′m matrix will have its maximum value, i.e., selecting the
least redundant set of coordinates. This is the same procedure
used for defining delocalized internal coordinated for use in
geometry optimizations.23 Alternatively, the symmetry matrix
can be determined using a rule-based combination of
primitive coordinates, of which the procedure for defining
natural internal coordinates (NIC) is the most well-known.22,28

The main limitation of NIC is the difficulty in defining
nonredundant coordinates for systems containing fused and/
or large rings. Furthermore, it may be difficult to extend the
principles for constructing NIC to general types of internal
coordinates, such as for example long-range coordinates
discussed below.

If the PCA extraction of symmetry coordinates is per-
formed for all the primitive coordinates together, each
symmetry coordinate will in general contain contributions
from all possible types, i.e., a mixture of S, B, and T type
coordinates. von Arnim and Ahlrichs have in connection with
geometry optimization suggested that the “hard” and “soft”
degrees of freedom should be separated.28 This may be done
by partitioning the primitive coordinates into blocks and
performing a PCA on each block separately. After extracting
the nonredundant combinations from the first block, the
primitive coordinates in the second block are orthogonalized
against the symmetry coordinates from the first block, before
being subjected to a PCA, and so on for all subsequent
blocks. In this procedure, there are three choices: how the
primitive coordinates are partitioned into blocks, the order
by which the blocks are subjected to the PCA, and the
threshold on eigenvalues for deciding whether a given PCA
component is used for defining a symmetry coordinate. It is
advantageous if the block partitioning of coordinates is done
in such a way that the PCA for each block results in a clear
separation of the eigenvalues of the redundant and nonre-
dundant combinations. If the eigenvalues form a near
continuous set, the number of symmetry coordinates ex-
tracted from each block will depend on a somewhat arbitrary
cutoff parameter, and the number of coordinates selected in
a given block will influence the number of coordinates
extracted from all subsequent blocks due to the orthogonal-
ization. By partitioning the primitive coordinates into blocks,
the G′m matrix will always become more singular (smaller
determinant), as a block-sequential PCA for extracting
symmetry coordinates corresponds to neglecting coupling
elements between some of the b vectors, but for many

-log(|Gm|) < ∼(3N - 6) (17)

d ) Stq (18)

∆q ) S∆d (19)

∆d ) St∆q ) StB∆x ) B'∆x (20)

∆x ) B-1∆q ) B-1S∆d ) B′-1∆d (21)

G ) BBt (22)

Harmonic Vibrational Analysis J. Chem. Theory Comput., Vol. 7, No. 1, 2011 225



reasonable choices it will still be well within limits that allow
safe numerical handling.

All results in the present paper have been obtained with
the OPLS force field,39 with force constants calculated by
the Tinker program,40 and vibrational analysis performed
with a locally modified version of the Gamess-US program.41

Results

The key concept in the present paper is to investigate how
to define primitive coordinates and extract symmetry coor-
dinates to provide a useful set of coordinates for describing
molecular vibrations without compromising numerical ac-
curacy. The freedom in defining symmetry coordinates is
illustrated in Table 1 for the C60 fullerene. A total of 990
primitive coordinates (90 S, 540 B, and 360 T) can be defined
for this system, while only 174 nonredundant combinations
are possible. If a PCA analysis is performed on all 990
primitive coordinates together, the 174 symmetry coordinates
in total contain 56.9 S, 49.4 B, and 67.7 T primitive
coordinates, as defined by the sum of squares of the
coefficients in the rows of the symmetry matrix in eq 18
(coefficients from the PCA eigenvectors of the G matrix in
eq 22). If the three types of internal coordinates instead are
analyzed separately in the order S, B, and T, all 90 primitive
stretch coordinates are nonredundant. Once these are defined
as symmetry coordinates, there are 84 nonredundant com-
binations of the bending coordinates, and all torsional
coordinates consequently become redundant. If the PCA
analysis instead is performed in the order S, T, and B, 84
nonredundant combinations of the torsional coordinates are
extracted, and all bending coordinates becomes redundant.
The last row in Table 1 shows that if the PCA analysis is
done in the order T, B, and S, the nonredundant vibrational
space is described by 29 stretching and 145 torsional
coordinates. The log(|G′m|) values show that all four of these
sets of symmetry coordinates can be handled without
numerical problems. The four sets of symmetry coordinates
in Table 1 represent limiting cases where all PCA vectors
corresponding to numerically nonzero eigenvalues are se-
lected for each block, which for this system corresponds to
eigenvalues larger than 0.01, but other combinations of S,
B, and T coordinates could also be generated.

The vibrational analysis corresponds to determining the
eigenvalues and -vectors of the G′mFd matrix expressed in
the selected symmetry coordinates, and the normal modes
can subsequently be back-transformed to the primitive q

coordinates by eq 19. It should be stressed that all four sets
of coordinates in Table 1 give the same vibrational frequen-
cies, but the description of the corresponding normal modes
in terms of primitive coordinates is substantially different.
Since the normal modes expressed in the q coordinates are
not orthogonal, the contribution of the different types of
coordinates is not necessarily the same as for the symmetry
coordinates, and the composition in terms of S, B, and T
coordinates is also shown in Table 1. While the nonorthogo-
nality introduces some changes in the importance of each
type of coordinate, the results show that there is considerable
freedom in selecting coordinates for the vibrational analysis.

One of our main motivations for the present work was to
perform vibrational analysis of proteins, where the confor-
mational degrees of freedom are determined primarily by
torsional coordinates. In order to simplify the description of
the vibrations related to conformational transitions, it is of
interest to perform the PCA in the order S, B, and T in order
to minimize the number of torsional coordinates. We
furthermore propose a separation of the torsional coordinates
into four groups, defined as follows:

• Hard (HD) torsions: The two central atoms either form
a (partial) double bond or are part of a (small) ring system
(only five- and six-membered rings are relevant for proteins).
Rotation around amide bonds belongs to this class. For three-
coordinated atoms with a near-planar geometry, these
torsional coordinates describe the out-of-plane movement of
the central atom.

• Back-Bone (BB) torsions: The two central atoms are part
of the peptide backbone but are not connected by an amide
bond; i.e., these are the Ramachandran φ and ψ angles.

• Side-Chain (SC) torsions: The two central atoms belong
to an amino acid side chain, or one of them is the backbone
CR atom, but the torsion is not of the soft type.

• Soft (SF) torsions: Rotation around single bonds con-
nected to terminal groups in a side-chain. This class includes
all torsional angles describing the rotation of -OH, -SH,
-CH3, and -NH3 groups. These four torsional blocks are
analyzed in the order HD, BB, SC, and SF when the
symmetry coordinates are extracted by PCA. Table 2 shows
the vibrational analysis for the angiotensin octapeptide
(amino acid sequence DRVYIHPF) in an extended confor-
mation, where 158 S, 281 B, and 411 T primitive coordinates
can be generated on the basis of atomic distance criteria.
The torsional coordinates can, according to the above
classification, be separated into 151 THD, 90 TBB, 120 TSC,
and 50 TSF coordinates. The combined PCA treating all SBT
coordinates together provides symmetry coordinates corre-
sponding to 154.7 S, 155.3 B, and 149.0 T primitive
coordinates. Performing the PCA on the block-separated
coordinates gives the results in the second row in Table 2,
where the number of torsional coordinates now is reduced
to 56. The log(|G′m|) value, however, shows that the
symmetry coordinates between blocks have become some-
what linearly dependent. The main reason for this is a strong
coupling between the B and THD coordinates, as shown by
the results in the third row of Table 2, where the THD’s are
allowed to mix with the bending coordinates during the PCA.
The necessity of allowing the B and THD coordinates to mix

Table 1. Vibrational Analysis for the C60 Molecule (60
atoms, 174 vibrational modes)

Symmetry coordinates Normal modes

PCA order NS NB NT -log(|G′m|) NS NB NT

SBT 56.9 49.4 67.7 115 42.7 42.6 88.7
S, B, T 90 84 0 192 78.3 95.7 0
S, T, B 90 0 84 144 73.5 0 100.5
T, B, S 29 0 145 202 35.2 0 138.8

NS, NB, and NT indicates the sum of squared coefficients for
stretch, bend, and torsion coordinates in the symmetry coordinates
and in the normal modes. log(|G′m|) is the logarithm of the
determinant of the G′m matrix; see the text for discussion.
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is that the HD torsional coordinates describe the out-of-plane
motion for near-planar atoms, which are strongly coupled
to the corresponding in-plane bending motion. The last row
in Table 2 shows the results obtained using natural internal
coordinates for the analysis, where an improper torsional
coordinate has been used to describe the out-of-plane motion
for tricoordinated atoms when the torsional angle was larger
than 170°. It is seen that the PCA-based definition of the
symmetry matrix gives very similar results to using rule-
based NIC but avoids the problems of defining NIC for large
rings42 and using a somewhat arbitrary parameter for
deciding when to use out-of-plane coordinates instead of
regular bending coordinates.

The normal-mode analysis in terms of contribution from
the primitive coordinates is shown in the right-hand part of
Table 2. The results in the third row show that the 15 TSC

coordinates make contributions corresponding to a total of
53.8 normal modes, and the seven TSF coordinates make
contributions to 34.6 modes. The difference between the
contribution of the primitive coordinates to the symmetry
coordinates and the normal modes is a measure of the
nonorthogonality of the normal modes in the primitive
coordinates. The significance is that the PCA can extract
internal degrees of freedom that span a proportionally larger
part of the vibrational space than they span in terms of
symmetry coordinates.

The log(|G′m|) value can be used as a criterion for selecting
one set of symmetry coordinates over another,37 but other
criteria are also possible. In the normal coordinate system,
the G′m-1, Fd, and G′mFd matrices are diagonal, and
symmetry coordinates that make these matrices more diago-
nal dominant may thus indicate that they are more natural
coordinates for describing the vibrational problem. As the
diagonal elements of the G′mFd matrix in the normal
coordinate system are proportional to the square of the
frequencies, we suggest that the difference between
�(G′mFd)ii and νi over all or a selected range of frequencies
can be used as an indicator of whether a given set of
symmetry coordinates is better than other alternatives.

Table 3 shows the average diagonal and off-diagonal
elements of the Fd and G′mFd matrices, as well as the
�(G′mFd)ii - νi difference averaged over all frequencies. A
complete separation of the S, B, and T primitive coordinates
(row 2 in Table 3) leads to a small value of the G′m
determinant and results in an increase in the Fd matrix
elements by roughly 3 orders of magnitude, which clearly
is unfavorable. The coordinate separation where the HD
torsions are combined with the bending coordinates during

the PCA, however, makes both the Fd and G′mFd matrices
more diagonal dominant, as well as reducing the average
�(G′mFd)ii - νi difference by roughly a factor of 2. A
separation of S, B, and T coordinates, where the HD torsions
are combined with the bending coordinates for defining the
symmetry matrix, thus appears to be preferable over a
combined approach where all primitive coordinates are
allowed to mix. The use of natural internal coordinates makes
the Fd and G′mFd matrices even more diagonal and reduces
the average �(G′mFd)ii - νi difference by another a factor
of 2.

In large proteins, the low-frequency modes often describe
large-scale movements corresponding to elongation, bending,
and twisting motions of the whole system or of large domains
relative to each other. In either Cartesian or internal
coordinates of the type discussed above, these normal modes
are described as a linear combination of many coordinates,
each of which enters the normal mode with a small
coefficient. The existence of such large-scale movements
suggests that the primitive set of coordinates should be
augmented with long-range coordinates to allow a more
compact description of the low-frequency modes. One
possibility is to define long-range stretch, bend, and torsion
coordinates between CR atoms of each residue, and such
coordinates can be generated automatically, analogous to the
corresponding short-range coordinates. We have considered
a scheme based on a list of CR atoms ordered according to
the protein backbone connectivity, as illustrated in Figure
1, where long-range coordinates are defined between CR

atoms that are separated by a fixed number of residues,
denoted stride. A stride of 1 means that long-range coordi-
nates are defined between all CR atoms in neighboring
residues (1-2, 2-3, 3-4, etc.); a stride of 2 means that long-
range coordinates are defined between CR atoms in every

Table 2. Vibrational Analysis for the Angiotensin Octapeptide (155 atoms, 459 vibrational modes)a

Symmetry Coordinates Normal Modes

PCA order NS NB NT-HD NT-BB NT-SC NT-SF -log(|G′m|) NS NB NT-HD NT-BB NT-SC NT-SF

SBT 154.7 155.3 56.0 33.3 41.4 18.6 308 99.5 104.7 77.1 50.0 80.1 47.7
S, B, T 158 245 19 15 15 7 541 114.1 163.1 37.0 40.0 65.5 39.1
S, BTHD, T 158 195.7 68.3 15 15 7 354 107.4 134.9 96.0 32.3 53.8 34.6
NIC 158 205 59 15 15 7 376 111.0 148.0 67.4 36.0 59.2 37.5

a NS, NB, NT-HD, NT-BB, NT-SC, and NT-SF indicate the sum of squared coefficients for stretch, bend, and torsion (hard, back-bone,
side-chain, soft) coordinates in the symmetry coordinates and in the normal modes. log(|G′m|) is the logarithm of the determinant of the G′m
matrix; see the text for discussion. NIC indicates natural internal coordinates, using 170° as a criterion for using improper torsional
coordinates for near-planar tri-coordinated atoms.

Table 3. Vibrational Analysis for the Angiotensin
Octapeptide (155 atoms, 459 vibrational modes)a

PCA
order

-log
(|G′m|) 〈|Fii|〉 〈|Fij|〉 〈|GFii|〉 〈|GFij|〉 〈|�(G′mFd)ii - νi|〉

SBT 308 0.21 0.005 0.089 0.0027 471
S, B, T 541 1227.86 14.75 0.090 0.0094 220
S, BTHD, T 354 0.25 0.004 0.089 0.0013 223
NIC 376 0.26 0.002 0.089 0.0003 126

a NIC indicates natural internal coordinates, using 170° as a
criterion for using improper torsional coordinates for near-planar
tri-coordinated atoms. 〈|Fii|〉, 〈|Fij|〉, 〈|GFii|〉, and 〈|GFij|〉 are average
diagonal and off-diagonal elements of the Fd and G′mFd matrices,
respectively (in atomic units). The last column is the average
difference between the square root of the diagonal elements of the
G′mFd matrix and the frequencies (in cm-1).
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second residue (1-3, 3-5, 5-7, etc.); a stride of 3 means
that long-range coordinates are defined between CR atoms
in every third residue (1-4, 4-7, 7-11, etc.); etc. The
usefulness of stride restrictions is perhaps best illustrated by
considering the R helix in Figure 1, where a stride of 4

corresponds to linking CR atoms between residues having
made approximately a full helix turn. Long-range coordinates
with strides of 4, 8, etc. may thus be naturally well-suited
for describing deformations of R-helix moieties. In the PCA
extraction of symmetry coordinates, the long-range coordi-
nates of a given type are collected in a separate block and
are always treated before the corresponding short-range
coordinates; i.e., the ordering is SLR, S, BLR, B+THD, TLR,
TBB, TSC, and TSF. The PCA ensures that the nonredundant
long-range coordinates are selected first, and linear combina-
tions of short-range coordinates that span the same space
are removed.

Table 4 shows the average �(G′mFd)ii - νi difference for
the five lowest modes for helical and extended conformations
of a 50 residue polyalanine peptide as a function of adding
long-range coordinates with increasing strides. For the helical
conformation, the five lowest vibrational frequencies are 2.16,
2.16, 5.63, 5.67, and 6.25 cm-1, while the corresponding
values for the extended conformation are 0.14, 0.15, 0.34,
0.47, and 0.81 cm-1, and these describe global deformation
modes. In the absence of long-range coordinates, the average
�(G′mFd)ii - νi deviations are 34.6 and 36.2 cm-1,
respectively, while the corresponding values using natural
internal coordinates are 45.1 and 62.9 cm-1 (not shown in
Table 4). The addition of long-range stretching coordinates
with strides larger than 1 markedly reduces the deviation,
while long-range bending or torsional coordinates are less
effective. For the extended conformation, the addition of
long-range stretching coordinates with even strides has a
larger effect than with odd strides. We have checked that a
similar behavior is observed for a 49 residue polyalanine;
i.e., the alternating effect is not related to the specific length
of the polypeptide. For both conformations, a stride of 4
appears to be especially effective in reducing the deviation.

Table 5 shows the effects on the symmetry coordinates
and normal modes by the addition of long-range stretch,
bend, and torsion coordinates with a stride of 4 for helical
and extended conformations of a 50 residue polyalanine
peptide. For the symmetry coordinates, the long-range
coordinates simply replace a corresponding number of
backbone torsional coordinates, and the log(|G′m|) value
changes only slightly. The main effect on the description of

Figure 1. Illustration of a helical conformation of a polyalanine
peptide with CR atoms highlighted and hydrogen atoms
omitted. Long-range stretching coordinates with a stride of 4
and 8 are indicated by dashed lines.

Table 4. The Effect of Adding Long-Range Coordinates on
Vibrational Analyses for Helical and Extended
Conformations of a 50 Residue Polyalanine Peptidea

Helix Extended

stride SLR BLR TLR SLR BLR TLR

none 34.6 36.2
1 32.8 25.9 29.6 48.8 16.7 5.1
2 5.6 12.5 9.8 0.7 17.3 4.2
3 4.6 26.1 19.4 5.0 17.5 4.8
4 1.0 14.2 19.5 0.3 15.7 3.8
5 2.4 13.4 16.4 4.5 14.5 4.8
6 1.1 15.4 12.8 0.7 14.7 4.0
7 1.6 14.9 b 5.1 10.0 b
8 0.6 b b 1.3 b b
9 1.2 b b 4.4 b b

a Table entries show 〈|�(G′mFd)ii - νi|〉 for the lowest five
vibrational frequencies (in cm-1). SLR, BLR, and TLR indicate
long-range stretch, bend, and torsional coordinates, respectively.
b Less than five long-range coordinates added.

Table 5. The Effect of Adding Long-Range Stretching Coordinates with a Stride of 4 on the Vibrational Analyses for Helical
and Extended Conformations of a 50 Residue Polyalanine Peptidea

symmetry coordinates normal modes average 5 mode % composition

conformation NS-LR NB-LR NT-LR NT-BB -log(|G′m|) NX-LR NT-BB CX-LR CT-BB CT-other

helix 0 0 0 96 1239 0 241.8 0 63.9 33.3
11 0 0 85 1225 24.7 220.2 54.9 26.9 17.1
0 10 0 86 1244 1.5 231.3 8.0 55.4 33.8
0 0 9 87 1226 51.7 209.0 65.4 19.9 13.9

extended 0 0 0 96 1235 0 270.7 0 98.5 1.3
11 0 0 85 1246 19.7 244.9 17.5 80.3 1.9
0 10 0 86 1250 4.6 252.4 33.6 60.0 5.5
0 0 9 87 1207 254.9 148.2 100.0 0.0 0.0

a NS-LR, NB-LR, NT-LR, and NT-BB indicate the number of long-range stretch, bend, torsion, and back-bone torsional coordinates,
respectively, and NX-LR indicates the number of the particular type of long-range coordinate. log(|G′m|) is the logarithm of the determinant of
the G′m matrix; see the text for discussion. CX-LR, CT-BB, and CT-other indicate the average composition of the five lowest normal modes in
terms of long-range, back-bone torsion, and torsion coordinates other than back-bone, respectively. The total number of normal modes is
1470. The major change by the addition of long-range coordinates is in the number of backbone torsional coordinates and torsional normal
modes, and only those are listed.

228 J. Chem. Theory Comput., Vol. 7, No. 1, 2011 Jensen and Palmer



the normal modes by adding long-range coordinates is also
a replacement of the backbone torsional coordinates, but there
is a significant difference between the type of long-range
coordinate and the helical/extended conformation.

For the helical conformation, long-range stretching and
torsional coordinates are more important than long-range
bending coordinates. The 11 long-range stretching coordi-
nates contribute to a total of 24.7 normal modes, as measured
by the sum of squared coefficients in eq 16. The 10 long-
range bending coordinates, on the other hand, only contribute
to 1.5 normal modes, while the nine long-range torsional
coordinates contribute to 51.7 normal modes. The long-range
coordinates are primarily involved in the description of the
low frequency normal modes, as illustrated by the average
composition of the five lowest normal modes shown in the
last three columns in Table 5. In the absence of long-range
coordinates, these global deformation modes are described
primarily as a combination of backbone torsional coordinates,
where the weight of any primitive backbone torsional
coordinate to a given normal mode is less than 1%. The
addition of only 11 long-range stretching coordinates to the
set of 2589 short-range primitive coordinates results in these
five modes being described as a combination of long-range
stretching and short-range torsional coordinates. The 11 long-
range stretching coordinates describe more than 50% of the
five lowest normal modes on average, and each individual
long-range stretching coordinate accounts for up to ∼25%
of a given normal mode. A similar effect is observed for the
long-range torsional coordinates.

The extended conformation has a large number of low
frequency bending and twisting modes (145 modes below
100 cm-1), of which many resemble standing waves for a
string. Long-range torsional coordinates are very efficient
at describing these modes, and the nine long-range torsional
coordinates make contributions corresponding to a total of
254.9 normal modes! The description of the five lowest
normal modes accordingly changes from being a linear
combination of many backbone torsional coordinates to a
linear combination of essentially only the nine long-range
torsional coordinates.

Consecutive helical or sheet moieties with ∼50 residues
are unusual in actual proteins, and the results in Tables 4
and 5 thus primarily serve as an illustration that long-range
coordinates may be advantageous for a compact description
of low-frequency large-scale motions in proteins. Instead of
representing the low-frequency normal modes as a linear
combination of a large number of short-range primitive
coordinates, these modes can instead be represented as a
combination of a few long-range coordinates with large
weights for describing the overall motion and number of
short-range coordinates with small weights for describing
the local displacements. For globular proteins, where residues
may be spatially close without being close in terms of
backbone bonding, additional long-range coordinates defined
by distance or hydrogen bonding criteria may be advanta-
geous. Which long-range or interstrand coordinates are most
advantageous will most likely depend on the nature of the

given protein. Vibrational analyses for a number of real
proteins are required to probe these effects.

Summary

The present work shows that there is considerable freedom
in choosing internal coordinates and in extracting nonredun-
dant combinations of these for describing vibrational normal
coordinates. For large molecular systems, like proteins, the
addition of selected long-range coordinates can provide a
compact description of especially the low-frequency normal
modes. Vibrational normal modes calculated in general
coordinates may be of use for analysis purposes, for example,
for identifying possible large-scale transformations,7 for
biasing molecular dynamics simulations,10 or for running
dynamics simulations in selected internal coordinates.43 The
use of long-range coordinates may also be of interest in
geometry optimizations of large flexible systems.
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Abstract: We present a new replica exchange method, designed for optimal native state protein
sampling in explicit solvent, called replica exchange with flexible tempering (REFT). The method
was built upon the recently introduced replica exchange with solute tempering (REST). The
potential function is adapted to direct the conformational search toward interdomain movements
and the flexible portions of the protein. We demonstrate the improved sampling efficiency of
REFT compared to the original REST for the bacteriophage T4 lysozyme.

Introduction

The replica exchange method (REM) is a parallel simulation
method aimed to improve the sampling efficiency of complex
systems with rugged energy landscapes such as proteins.1-3

In REM, multiple replicas are simulated in parallel in
different thermodynamic states. At regular intervals during
the simulation, exchanges between replicas are attempted.
The acceptance probability for exchange is based on the
detailed balance condition, which ensures that the canonical
ensemble is conserved in the limit of an infinitely long
simulation time.4 In its original implementation, the tem-
perature was chosen as the state variable. Exchanges between
low and high-temperature states allow the system to cross
high barriers much more easily. The temperature REM (T-
REM) method proved to be very powerful for small systems
such as peptides and small proteins.5-7 However, as the
number of replicas increases with the square root of the
system degrees of freedom,8 its use for medium sized
proteins or larger becomes impractical.

To overcome the limitations of the original T-REM, many
variations have been suggested in the literature.9 Hamiltonian
REM (H-REM), which uses the potential energy function
as the state variable, is particularly promising.8 In H-REM
only parts of the Hamiltonian are scaled between replicas10

as opposed to the temperature, which is equivalent to a
uniform scaling of the potential energy. Reported H-REM
implementations include scaled hydrophobicity and hydro-

phobic aided REM (mimicking the chaperone effect by
lowering the hydrophobic interactions),8,11 phantom chain
and soft-core REM (allowing partial atomic overlaps),8,12

REM with peptide backbone biasing potential (lowering the
backbone dihedral angle rotational barriers).13 Zacharias
developed a H-REM method that applies a penalty potential
to drive the protein along the soft modes, which were
determined from elastic network model calculations.14

Berne and co-workers introduced an interesting REM
variant, called replica exchange with solute tempering
(REST).15 In REST, the potential energy scales with the
temperature in such a way that the solvent appears cold even
at high temperatures. The mutual interaction energy between
water molecules disappears from the exchange acceptance
criterion, giving rise to higher exchange probabilities.
Because the bulk of the system degrees of freedom stems
from the water molecules, far less replicas are needed.

In this article, we propose to advance the REST method
for native-state sampling by using a dual scale approach.
Proteins can be subdivided into rigid and flexible regions.
Rigid domains usually consist of (single or multiple) second-
ary structure elements like R-helices and �-sheets. Rigid
domains are often connected by flexible hinges or loops,
allowing large movements between them. We hypothesize
that the sampling rate of native proteins is limited by the
slow large-scale movements between rigid domains. In the
new method, we selectively heat-up the flexible parts,
keeping the rigid domain interactions cold. As such, inter-
domain motions are facilitated, while the domains themselves
maintain a nativelike state. We refer to this method as replica
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exchange with flexible tempering (REFT). The REFT method
was applied to the native-state sampling of the bacteriophage
T4 lysozyme (T4L) and the sampling efficiency was com-
pared with the REST method.

Materials and Methods

Replica Exchange with Solute Tempering. The REST
method is a combination of H-REM and T-REM. In REST,
the potential energy function E0 is decomposed into three
terms

where pp, ww, and pw correspond to the internal protein-
protein, water-water, and protein-water interactions
respectively. The ww and pw energy terms are scaled with
the simulation temperature

where � is the reciprocal temperature 1/kBT with kB the
Boltzmann constant. The indices 0 and i refer to the lowest
and ith temperature replica. Note that we have slightly
adapted the original scaling factor of the pw term (�0 +
�i)/2�i,15 to allow defining the rigid and flexible atoms at
the force field level.

Replica Exchange with Flexible Tempering. The REFT
method further categorizes the protein atoms as either rigid
or flexible. The terms Epp and Epw are further subdivided

where ff, rr, ww, fr, fw, and rw represent the flexible-flexible,
rigid-rigid, water-water, flexible-rigid, flexible-water, and
rigid-water interactions, respectively. The following scaling
was used for the potential energy of the higher-temperature
replicas

As in eq 2, this scaled potential allows defining the rigid
and flexible atoms on the force field level by appropriately
scaling the parameters of individual atoms, pairs, triplets and
quadruplets. Both REST and REFT satisfy the detailed
balance condition, and thus lead to the canonical ensemble
in the limit of infinite sampling.

Determination of Rigid Domains. The floppy inclusion
and rigid substructure topography (FIRST) program identifies
rigid domains in a single protein conformation based on
geometrical constraints to model covalent bonds, hydrogen
bonds, and hydrophobic tethers.16 Constraints are defined
based on a cutoff energy of interaction. The FIRST analysis
was performed on the closed-state X-ray structure (2LZM).
Only clusters with more than 15 atoms were included. The
constraint cutoff energy value was chosen such that the
number of rigid atoms is approximately one-third of all
protein atoms. For T4L, a cutoff energy of 0.5 kcal/mol was
used, resulting in 12 rigid domains (Figure 1).

Molecular Dynamics Simulations. Molecular dynamics
(MD) simulations were performed with the AMBER ff03
force field17 using the open-source GROMACS 4.0 software

package, which was adapted to account for exchanges
between different Hamiltonian states.18 Long-range electro-
statics were computed with the particle mesh Ewald
method.19 The nonbonded cutoff was set to 1.2 nm. A Fourier
spacing of 0.19 nm was used. All covalent bonds were
constrained using P-LINCS.20 The integration time step was
2 fs. The neighbor list was updated every 10 steps. The
system temperature was controlled by the velocity rescaling
thermostat, which preserves the canonical ensemble.21 Ex-
changes between replicas were attempted every 1 ps.

The initial T4L structure was obtained from the X-ray
structure (2LZM). Protonation states were determined using
the H++ web server.22 The charged protein was neutralized
with Cl- ions and solvated in a dodecahedral box using 9093
TIP3P water molecules. The neutral solvated system was
relaxed, heated to 300 K using position restraints and briefly
equilibrated for 50 ps. Next, one REST (s1) and one REFT
(f1) simulation were started using identical starting structures
for each replica. After 2 ns of conventional MD, again one
REST (s2) and one REFT (f2) simulation were started. The
REM simulations were carried out for 120 ns, the last 60 ns
of which were used for analysis. The f1 simulation was
continued until 360 ns for further analysis of the equilibrated
ensemble. Replica temperatures were 300.0, 308.4, 317.4,
326.8, 336.6, 346.8, 357.3, 368.2, 379.5, 391.2, 403.3, 415.8,
428.7, 442.1, 455.9, 470.2, 484.9, 500.1, 515.9, 532.2, 549.0,
566.3, 584.3, 602.8 K for REFT, and 300.0, 307.8, 315.9,
324.1, 332.6, 341.2, 350.2, 359.3, 368.7, 378.3, 388.2, 398.3,
408.7, 419.4, 430.3, 441.5, 453.1, 464.9, 477.0, 489.5, 502.2,
515.4, 528.8, 542.6, 556.8, 571.3, 586.2, 601.5 K for REST.
The replica temperatures were adapted from an exponentially
distributed temperature set, based on preliminary 2 ns replica
exchange simulations. Special care was taken to obtain
pairwise exchange probabilities between all neighboring
replicas close to 20%.

The cleft volume was calculated by generating a spherical
grid of oxygen atoms with a radius of 1.1 nm around the
center of the CR atoms of residues Glu11, Gly30, and
Phe104. These three residues are located at the active site
core inside the cleft. The grid spacing was 0.1 nm. Grid
atoms overlapping with protein atoms were removed and the

E0 ) Epp + Eww + Epw (1)

Ei ) Epp + (�0/�i)Eww + √�0/�iEpw (2)

E0 ) Eff + Err + Eww + Efr + Efw + Erw (3)

Ei ) Eff + (�0/�i)Eww,rr,wr + √�0/�iEfw,fr (4)

Figure 1. The T4L rigid domains as determined by FIRST.
Each colored region represents a different rigid domain. The
gray-colored side chains, �-sheet and loops are flexible. The
dark blue R-helix connects the N-terminal and C-terminal
domains.
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number of remaining grid atoms was counted. The principal
component analysis (PCA) was carried out on the backbone
atoms of a series of 38 X-ray structures as described by de
Groot et al.23 Snapshots of the MD simulations were
projected onto the calculated eigenvectors.

Results

T4L is a 164-residue protein which is known to display large
conformational changes upon substrate binding through hinge
bending motion.24,25 The protein consists of two domains
connected by a central R-helix. The active site is located in
the cleft between the N-terminal and C-terminal domains.
The hinge bending motion mediates a closing and opening
of the active-site cleft. Starting from the closed state, the
equilibration rates of the open and closed states and their
relative populations were used to compare the sampling
efficiency of the REST and REFT methods.

Four explicit solvent 120 ns simulations were carried out:
two independent REST (s1, s2) and two independent REFT
(f1, f2) simulations. To span a 300-600 K range with 20%
acceptance probability between successive replicas, using
REST and REFT 28 and 24 replicas were needed respec-
tively. For comparison, with T-REM we estimate that about
124 replicas would have been needed to span the same
exchange rates and temperature range.

We used the FIRST method to identify the rigid domains.16

The effect of increased rigid domain interactions on the
secondary structure is readily seen in Figure 2. In the REST
simulation, at high temperatures both the R-helix and �-sheet
content decays. Using REFT, R-helix content stays intact
even at 600 K. The �-sheet content however decreases with
temperature. The �-strands were not identified by FIRST as
part of a rigid domain, reflecting the more flexible nature of
�-sheets compared to helices.

We define the crossing rate as the number of replicas that
cross temperature space between 300 K and a given
temperature >300 K. High crossing rates are essential for
fast equilibration at low temperature. Compared to the REST
simulation, on account of the preservation of secondary
structure (Figure 2), the REFT crossing rates have drastically
increased (part A of Figure 3). The crossing rate differences
become more pronounced as the simulation progresses.

Above 500 K no single crossing was observed for any of
the 28 REST replicas during the last 60 ns. Thus, an effective
decoupling occurs between the high and low temperature
replicas.

Compared to REST, a larger part of the REFT system is
kept cold, which might affect the dynamics in the high-
temperature simulations. It is therefore important to evaluate
the mobility of the protein in conformational space. The
average distance covered every ps along the first PCA
eigenvector (Materials and Methods) as a function of
temperature is plotted in part B of Figure 3. This collective
coordinate corresponds to the hinge bending opening-closing
motion. At low temperatures, the mobility along the hinge
bending coordinate is comparable. As the temperature
increases, part of the kinetic energy is channeled toward the
slow hinge bending mode. Above 420 K however, the REST
hinge bending mobility starts to degrade. This is easily
explained by the loss of native structure, which leads to a
distribution of kinetic energy into many local non-native
high-frequency motions. By contrast, in the REFT simulation,
a steady increase of the hinge bending mobility is seen along
the full temperature range.

To better understand how the potential function affects
conformational sampling at high temperature, we performed
two MD simulations of the REST and REFT states at
temperature index 17, but without replica exchanges (Figure
4). The thermodynamic state at temperature index 17 induces
strongly elevated protein dynamics, while the crossing rates
are still considerable for both methods (parts A and B of
Figure 3). Initially good open-closed transition rates are seen
for REST-state MD. However, after 4.3 ns the protein starts
to unfold, as can be seen from the backbone root-mean-
square deviation (bRMSD) plot (part C of Figure 4). As a
reference, at 300 K the bRMSD from the X-ray structure
fluctuates between 0.07 and 0.47 nm. The unfolding coin-
cides with a sharp decline of the open-closed transitions to

Figure 2. Number of residues that are part of an R-helix or
�-sheet as a function of temperature index, averaged over
the last 60 ns of the 120 ns simulation. The temperature
indices denote the serial numbers of the consecutive ther-
modynamic states, starting with zero for the 300 K state. Error
bars represent the standard deviations of the averages.

Figure 3. Mobility in temperature and conformational space.
(A) Number of temperature crossings between 300 K and the
temperature index given in the abscissa. (B) Average distance
covered per ps along the first eigenvector of the PCA analysis.
Averages were taken over the last 60 ns of the two REST
and REFT simulations, respectively.
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zero (part B of Figure 4). For a large part of the simulation
time, the system samples a region in conformational space
that is non-native (PCA eigenvector 1 < -5, part A of Figure
4). In contrast, the REFT-state MD stays mainly within the
native bRMSD region, and the number of open-closed
transitions increases steadily throughout the trajectory. For
comparison, a 184 ns conventional MD simulation started
from the closed state did not yield a single transition to the
open state.26

In Figure 5, the sampling in the space of the two largest
PCA eigenvectors, as well as a series of 38 X-ray structures23

is shown. The second eigenvector describes a twisting mode.
Using REFT, the area of open conformations (eigenvector

1 < 1.25 nm) is populated more densely. At this stage the
systems are not yet equilibrated, which explains the differ-
ences between the four simulations in Figure 5. All X-ray
conformations are sampled by both methods.

Whereas the principal eigenvectors of a PCA analysis
represent the collective coordinate with the largest spatial
displacement, the cleft volume (Materials and Methods)
provides information about the local dynamics at the active
site. Again, the REFT simulations display a higher population
for the open state (>750 Å3) compared to the REST
simulation (Figure 6). Moreover, the closed state distribution
is much more dispersed, indicating better local sampling of
the active site cleft.

Part A of Figure 7 shows the time evolution of the average
cleft volume. Shortly after an initial increase, the REST
simulations’ cleft volumes decline sharply. A possible
explanation for this decline might be that open structures
unfold faster than closed structures, and hence are trapped
inside the high-temperature states more easily. A similar but
much smaller cleft volume decline is also visible in the REFT
simulations. After about 10-30 ns, the REFT cleft volumes
increase steadily, whereas the REST cleft volumes remain
at a much lower level.

The rate of open-closed transitions in the 300 K state,
which reflects exchanges between replicas with open and
closed conformations, provides an additional measure of the
sampling efficiency. As shown in part B of Figure 7, the
transition rate is relatively constant for all four simulations,
indicating good local replica exchange frequencies. During
the last 60 ns of the simulation, the average REFT transition

Figure 4. Time evolution of the first PCA eigenvector (A),
the cumulative number of transitions between the open and
closed states (B), and the bRMSD from the X-ray structure
(C) of two high-temperature MD simulations using a potential
function corresponding to temperature index 17, which is
464.9 K for REST (black) and 500.1 K for REFT (red). The
upper and lower gray bars in (A) indicate the closed and open
states, respectively.

Figure 5. 2D projection of the 300 K trajectories onto the
first two eigenvalues of a PCA on the backbone of a series of
X-ray structures. REST (s1, s2), REFT (f1, f2). Black dots
indicate samples taken every 10 ps. Red circles indicate 38
X-ray reference structures.

Figure 6. Cleft volume distribution of the two independent
REST (s1, s2) and REFT (f1, f2) simulations, from the last
60 ns of the 120 ns simulations at 300 K.

Figure 7. Time evolution of the cumulative average cleft
volume (A) and the total number of open-closed transitions
(B) in the 300 K state. Starting cleft volumes were 489 Å3

(s1, f1) and 406 Å3 (s2, f2).
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rate is 47 transitions/ns, 2.5 times the REST transition rate
of 18 transitions/ns. Considering acceptance probabilities
∼20% with one replica exchange attempt every picosecond,
the fraction of REFT and REST replica exchanges ac-
companied by an open-closed transition are ∼23% and
∼9%, respectively.

To estimate the simulation time necessary to obtain a fully
equilibrated ensemble, and to get an estimate of the equi-
librium distribution, the f1 REFT simulation was extended
to 360 ns. Judged by the evolution of the cleft volume (part
A of Figure 8), about 120 ns of REFT simulation time seems
necessary to reach an equilibrated state. Note that the same
starting conformation was used for each replica within a
given simulation to avoid any bias in the comparison of both
methods. If a diverse set of starting conformations was used
across all replicas, a much shorter equilibration time would
likely be obtained.

As shown in part B of Figure 8, T4L forms a distinct two-
state open-closed equilibrium in solution. Both states occupy
approximately half of the population. This two-state model
is confirmed by the PCA (part C of Figure 8). In addition, a
small third superclosed state is visible in part C of Figure 8,
which has a population of ∼5% (eigenvector 1 > 4.9 nm).
Here the N- and C-terminal domains are tightly held together
by two side chain H-bonds (Asp20 - Gln141) and (Glu22 -
Arg137). The latter H-bond is much less prominent, and the
former H-bond is virtually nonexistent in the normal closed
state.

Discussion

The efficiency of replica exchange methods depends critically
upon (i) the mobility in temperature space and (ii) the
mobility in conformational space in the high-temperature
range. As was observed by the Berne group, the REST
method did not perform well for larger systems.27 Despite
the high acceptance ratios, the rate at which replicas traveled
temperature space between the highest and lowest temper-
ature state remained low, effectively decoupling the high and
low temperature replicas. Replicas at high temperatures were
mainly unfolded, replicas at low temperatures were mostly
in the native state, but native-unfolded state transitions within
a single replica occurred rarely. Better results were obtained
by excluding a randomly chosen subset of water molecules

from the solvent interaction scaling,27 partially negating the
benefits of REST compared to the original T-REM.

With REST, the high-temperature replicas are mostly
unfolded and thus sample a region in conformational space
that does not significantly contribute to the equilibration of
the native state. Because of the high entropy of the unfolded
state, the probability of refolding to the native state is very
low. As shown in Figure 4, partial unfolding also hinders
open-closed interconversion rate of T4L. At room temper-
ature, however, the native state is much more stable than
the unfolded state. Thus, in REST the only meaningful way
for an unfolded protein at high temperature to contribute to
the native state at room temperature is by refolding into the
native state while traveling down the temperature ladder,
which is a very slow process.

The REFT method is based on (i) the notion that only
about 0.00001% to 0.01% of polypeptide chains are unfolded
at physiological temperatures,28 and (ii) the assumption that
the equilibration rate of proteins is usually limited by slow
interdomain dynamics. The REFT potential function tends
to keep the rigid domains intact over the full temperature
range, while stimulating domain-domain movements at
higher temperatures. As such, more simulation time is spent
in the native state, which, as is demonstrated in this article,
allows the native state to reach an equilibrated ensemble
much faster.

It is important to note that the REFT method in its current
form cannot be applied a priori to an amino acid sequence
of unknown fold. The method is however not meant to study
protein folding, but to achieve faster equilibration of the
protein native state. Note that protein unfolding is not
prevented at any temperature. At higher temperatures how-
ever, the fraction of time spent in the unfolded state will
generally be small, just as is the case at low temperature
with conventional MD.

The choice of the rigid domains will affect the efficiency
of the REFT method. If all atoms are considered rigid, the
system is equivalent to multiple conventional MD simulations
at 300 K. The REST method corresponds to a REFT system
with only flexible protein atoms. In this work, we have used
the FIRST algorithm to determine the rigid and flexible
domains, which derives geometrical constraints from a static
protein structure to identify the rigid domains. In the case

Figure 8. Native state equilibration of T4L in the 300 K state. (A) Evolution of the cleft volume shown as block averages over
60 ns. (B) Cleft volume distribution taken over the last 240 ns of a 360 ns simulation. Error bars represent the standard deviations
from the average cleft populations of two 120 ns blocks. The open state has a population of 49 ( 5%. (C) 2D projection of a
PCA analysis of the last 240 ns of a 360 ns REFT simulation. The purple diamond indicates the average position in 2D space.
The green square and blue triangle represent 150L(c) and 152L, respectively.
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of T4L, while large interdomain motions occur, the domains
themselves remain intact. This was verified by FIRST
calculations on both open and closed X-ray structures, which
gave very similar results. For more flexible proteins, a FIRST
analysis of multiple protein structures, experimental or from
simulation, could be used to distinguish the truly rigid
domains from the more flexible ones, as was proposed in
the original FIRST article.16 Other methods could be used
to obtain rigidity information, including simple secondary
structure identification algorithms, tCONCOORD,26 which
is similarly based on distance constraints, normal mode
analysis, and elastic network models.29

Independent evidence for the equilibrated state is provided
by a study of Goto et al. who obtained approximately equal
contributions from open and closed conformers by fitting
experimental dipolar couplings to a two-state open-closed
model.30 The superclosed state in part C of Figure 8 is similar
to the solution conformation of the T21C/T142C mutant,
which contains a disulfide bond between the N- and
C-terminal domains.30 The cleft of this mutant is even more
closed than the most closed X-ray T4L conformation (152L,
blue triangle in part C of Figure 8), a mutant with three
disulfide bonds. Earlier tCONCOORD and multiple conven-
tional MD simulations started at different conformational
states did not reveal this compacted state.26

The equilibrated average position on the 2D PCA plot
(violet diamond, part C of Figure 8) agrees reasonably well
with the position of the M6I mutant X-ray structure (150L(c),
green square, part C of Figure 8), which resembles the
average solution conformation of the T4L homologue C54T/
C97A calculated from 1HN-15N dipolar couplings.30 Pos-
sible explanations for the difference include: unsatisfactory
equilibration, inaccurate force field parameters (the AMBER
ff03 force field has been shown to favor R-helices, which
might lead to an overly rigid protein,31 differences between
the 150L(c) X-ray structure and the solution structure which
were not resolved by the NMR data, and the presence of the
two mutations (C54T/C97A) in the NMR structure.

Further improvements of the method are possible. To
optimize the balance between rigidity and flexibility, one
could refine the scaled potential in eq 4 by explicitly
enumerating the atom pairs whose interactions need to be
scaled. More accurate rigidity information could be extracted
from pregenerated conformational ensembles. Alternatively,
using a fast algorithm such as FIRST, rigid domains can be
calculated dynamically during the simulation, which would
facilitate the formation and destruction of transient domains.
Moreover, kinetic information could be extracted from the
REM simulations32 as a way to validate the assumption that
the large-scale motion between rigid domains is the slow
rate-limiting step.
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Abstract: Long-range electrostatic interactions are important in simulations of enzymatic
reactions. They can be divided into the effects due to bulk solvent and those due to the
electrostatic potential of the outer macromolecule. We study and quantify the importance of
these two effects for two test systems by application of the solvated macromolecule boundary
potential (SMBP) [J. Chem. Theory Comput. 2009, 5, 3114-3128]. We validate the accuracy
of the SMBP for these test systems and present a transferable protocol for determination of
optimal SMBP parameters as well as recommended default values for these parameters. Two
enzymatic reactions with different characteristics are studied: the intramolecular Claisen
rearrangement in chorismate mutase that is associated with little charge transfer and the
hydroxylation reaction in p-hydroxybenzoate hydroxylase that corresponds to a formal “OH+”
transfer and thus involves significant charge transfer. It is found that the effects of the electrostatic
potential of the outer macromolecule and of bulk solvent are only important in the latter case,
where their neglect causes deviations in the computed barriers on the order of 1-2 kcal/mol,
respectively. Even larger deviations on the order of several kilocalories per mole are observed
for the reaction energies in p-hydroxybenzoate hydroxylase if the electrostatic potential of the
outer macromolecule is neglected.

1. Introduction

Experience in classical simulations of biomolecular systems
indicates that a reliable description of long-range electrostatic
interactions is of crucial importance.1-6 Without an accurate
description of these effects, simulations can yield results that
are even qualitatively wrong. Examples range from the
stability of an R helix7,8 over the thermodynamics of peptide
folding processes9 to properties of lipid bilayers.10,11

Efficient approaches to describing electrostatic interactions
accurately have been developed for classical force field
simulation methods. If all solvent molecules are modeled
explicitly, the Ewald summation method in combination with
periodic boundary conditions (PBC) is the most established
choice.12-14 Unfortunately, Ewald summation suffers from
high computational costs since the enzyme has to be solvated

in a water box of adequate size15-17 to avoid artifacts from
the artificially imposed periodicity.1,18 Alternative approaches
include fast multipole methods19-22 and the use of stochastic
boundary conditions.23-26

The treatment of long-range electrostatic interactions is
far less developed in the context of hybrid quantum me-
chanical/molecular mechanical (QM/MM) approaches, which
are now routinely applied to study enzymatic reactions that
necessitate a QM description of bond breaking and forming
processes.6,27,28 The technical difficulties introduced by the
QM atoms are the main reason for this situation. Recently,
the Ewald summation method has been adapted for QM/
MM approaches using semiempirical29-31 and density func-
tional theory (DFT)32-34 QM methods.

The region in the enzyme that is described by an accurate
QM method in hybrid QM/MM approaches is necessarily
small and encompasses at most a few hundred atoms.
Therefore, QM/MM methods are best suited for treating
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localized electronic processes. In these cases, boundary
potentials are an attractive approach to handling long-range
electrostatic interactions.23-26,35-42 In the boundary potential
ansatz, the full system is subdivided into an inner region,
which comprises the active site and its neighboring residues,
and an outer region, which contains the rest of the enzyme
and the outer solvent molecules. While all atoms in the inner
region are modeled atomistically, the effect of the outer
region atoms on the inner region is mimicked by the
boundary potential. Assuming an ideal boundary potential,
statistical properties derived from simulations of the inner
region in interaction with the boundary potential are the same
as those from simulations of the full system. Although an
exact and rigorous boundary potential can be constructed
by integrating over all outer region degrees of freedom,42

approximations are indispensable to constructing an efficient
implementation.

The generalized solvent boundary potential (GSBP)43 has
been successful in classical force field simulations.43-48 It
was recently adapted for QM/MM approaches using semiem-
pirical QM methods.49,50 In the GSBP, the outer region
solvent molecules are represented by a polarizable dielectric
continuum (PDC) and the outer macromolecule region by
fixed point charges. The electrostatic potential of the outer
region is separated into a static potential, which is induced
by the outer region charges being shielded by the PDC, and
a dynamic reaction field potential, which is induced by the
interaction of the inner region charge distribution with the
PDC. The great advantage of the GSBP is its closed-form
expression for the dielectric response, which is also valid
for irregularly shaped dielectric boundaries. However, con-
struction of this expression is connected with a significant
computational overhead.

Therefore, we recently introduced the solvated macromol-
ecule boundary potential (SMBP),51 which is based on
approximations similar to those in the GSBP but has been
designed to be efficient in geometry optimizations. Moreover,
the SMBP can be used in combination with every QM/MM
Hamiltonian.

The effect of long-range electrostatics can be divided into
two contributions: interactions with bulk solvent and interac-
tions with the electrostatic potential of the outer macromol-
ecule region (EPOM). By construction, the SMBP allows
us to study both effects independently by an appropriate
choice of the dielectric constant of the PDC. Here, we apply
the SMBP to investigate and quantify the significance of
these two effects in QM/MM studies of enzymatic reactions.
Two enzymatic reactions were selected as test cases that have
been the focus of much theoretical and experimental research:
the Claisen rearrangement of chorismate to prephenate in
chorismate mutase (CM) and the hydroxylation reaction in
p-hydroxybenzoate hydroxylase (PHBH). Before applying
the SMBP, its accuracy for these two systems is evaluated,
optimal values for its inherent parameters are determined,
and a transferable protocol to validate the SMBP for other
enzymatic systems is presented.

2. Methods

In this section, we briefly review the theoretical foundation
of the SMBP and the GSBP.

2.1. Generalized Solvent Boundary Potential. The GSBP
introduces two main approximations with the objective of
providing an accurate and efficient approximation of the
electrostatic potential, which is induced by the outer mac-
romolecule and solvent region. The outer solvent molecules
are replaced by a PDC, and the outer macromolecule region
is represented by fixed point charges. Then, the GSBP
consists of two terms: the interaction of the inner region
charges (qA) with the electrostatic potential of the outer
macromolecule being shielded by the PDC (φs

o) and the
interaction with the self-induced reaction field φrf

i .

With the outer macromolecule region being fixed, φs
o is

constant and needs to be computed only once at the
beginning of a molecular dynamics (MD) simulation. Direct
computation of the second term, however, is prohibitively
expensive in MD runs since the reaction field potential has
to be updated for each configuration, i.e., in each step.

To circumvent repeated solution of the Poisson-Boltzmann
(PB) equation to update φrf

i , a Green’s function has been
introduced to express the inner reaction field potential for a
given charge density of the inner region (Fi).43

The reaction field Green’s function and the inner region
charge density are projected onto the same basis set {bn}.
The solvation energy of the inner region can then be
calculated from the reaction field matrix, Mrf, and the
generalized multipole moments of the inner region charge
density (Qn).

In this way, the GSBP offers an analytical expression for
the electrostatic potential and avoids solution of the PB
equation in each MD step. However, it is important to point
out that application of the GSBP is connected with a
significant overhead since computation of the reaction field
matrix requires solving the PB equation a few hundred
times.43,50

2.2. Solvated Macromolecule Boundary Potential. Al-
though free energy computations are becoming more popular
in the QM/MM field,28,52-55 the majority of QM/MM studies
still rely on (constrained) geometry optimizations to compute
potential energy differences and molecular structures of
stationary points. Hence, we developed the solvated mac-
romolecule boundary potential (SMBP) that targets QM/MM
geometry optimizations with ab initio or DFT QM methods.
Moreover, conceptual proximity to the GSBP was a require-
ment to allow application of the GSBP in free energy
perturbation studies on the basis of QM/MM/SMBP potential
energy profiles.51

∆Welec
GSBP ) ∑

A∈inner

qAφs
o(rA) + ∑

A∈inner

qAφrf
i (rA) (1)

φrf
i (r) ) ∫ dr' Fi(r') Grf(r, r') (2)

∆Welec
GSBP ) ∑

A∈inner

qAφs
o(rA) + 1

2 ∑
mn

QmMmnQn (3)
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The SMBP relies on the same basic approximations as
the GSBP: The outer macromolecule region is represented
by fixed point charges and the outer solvent molecules by
the PDC. However, the SMBP differs in the computation of
the inner self-induced reaction field potential, which is
updated in each geometry optimization step by solving the
PB equation. This is more efficient than the initial construc-
tion of the reaction field matrix by repeated solution of the
PB equation (typically about 800 times).50

In addition to efficiency in geometry optimizations, the
SMBP was designed to be applicable with all QM/MM
Hamiltonians. To achieve this, the interaction with the static
outer region potential and the reaction field potential is
expressed as the interaction of the QM and MM charge
densities with the effective potential that they experience,
respectively.

with

Since the QM and MM reaction field potentials, φrf
QM(r) and

φrf
MM(r), depend on the configuration of the inner region, they

have to be updated in each step. Computation of the QM
reaction field potential is further exacerbated by the mutual
dependence of the QM charge density and the QM reaction
field potential. To solve this problem, a self-consistent
reaction field (SCRF) procedure is applied: the wave function
and the effective QM potential are updated alternately, with
the QM charge density being fixed during computation of
φtot

QM and vice versa. This approach enables a flexible interface
of SMBP and QM codes: ESP charges are used to represent
the QM density in the PB equation, and a small set of virtual
surface charges is used to represent the SMBP during
optimization of the wave function. Hence, the SMBP can
be used in combination with virtually any QM code that is
suitable for QM/MM calculations.51

The QM/MM free energy perturbation (QM/MM-FEP)
approach introduced by Yang et al.56 allows the computation
of QM/MM free energy profiles using ab initio or DFT QM
methods at moderate computational costs. QM/MM-FEP is
based on three assumptions: (1) Sampling over the QM and
MM degrees of freedom can be separated in a product ansatz,
(2) finite-temperature effects in the QM region can be
estimated using the harmonic approximation, and (3) the
electrostatic interactions of the MM region with the QM
atoms can be approximated as interactions of MM point
charges with fixed ESP point charges on the QM atoms. The
QM/MM-FEP calculation provides a free energy correction
to the potential energy profile along a predefined reaction
coordinate.

The SMBP employs the same approximations as the
GSBP. Therefore, the SMBP and GSBP can be used
complementarily. If one uses a QM/MM/SMBP Hamiltonian

to compute the potential energy profile, the efficient GSBP
can be applied to sample over the MM degrees of freedom
in the subsequent FEP step. The resulting QM/MM/GSBP-
FEP method reduces the computational costs of the FEP step
by typically 1 order of magnitude in the cases studied.51

3. Computational Details

GSBP and SMBP have been implemented in a developmental
version of the modular program package ChemShell.57,58 In
the present study, the QM energies and gradients were
evaluated with the MNDO59 and Turbomole 5.7.1 pro-
grams.60 The DL_POLY61 code was employed to run the
CHARMM22 force field in all calculations of the MM part.62

Hydrogen link atoms were applied in combination with the
charge-shift scheme57 to saturate the QM region. The
HDLCOpt optimizer was used to optimize stationary points
in hybrid delocalized internal coordinates.63 The PB equation
was solved with the ChemShell PB module, which applies
the optimal successive over-relaxation method in combination
with Gauss-Seidel relaxation to compute the electrostatic
potential.64,65 A maximum absolute change in every grid
point of 2 × 10-5 au was adopted as the convergence
criterion, and third-order B splines were used to interpolate
between the grid points.66 The dielectric boundary was
defined as the superposition of the van der Waals radii from
the CHARMM22 force field. MD simulations were per-
formed unter NVT conditions with a time step of 1 fs at a
temperature of 300 K controlled by a Nosé-Hoover chain
thermostat.67-70 Free water molecules were kept rigid with
SHAKE constraints,71 and the mass of deuterium was
assigned to all hydrogen atoms. The QM reaction field
potential was considered converged when the root-mean-
squared deviation was below 2 × 10-5 au. At the beginning
of the SCRF procedure, a neutral charge was assigned to all
QM atoms.

4. Results

4.1. Chorismate Mutase: Validation and Parameter
Determination. CM catalyzes the intramolecular Claisen
rearrangement from chorismate to prephenate (Figure 1). A
recent review provides a summary of theoretical work on
the reaction mechanism and the origin of catalysis in CM.28

The Claisen rearrangement is a pericyclic reaction without
significant charge transfer, and one would thus expect only
minor effects of the EPOM and bulk solvent on this
enzymatic reaction.

The setup for CM was based on a system that has been
used in previous work.52 Initial coordinates were taken from

∆Welec
SMBP ) ∫ dr FQM(r) φtot

QM(r) + ∫ dr FMM φtot
MM(r)

(4)

φtot
QM(r) ) φs

o(r) + φrf
MM(r) + 1

2
φrf

QM(r) (5)

φtot
MM(r) ) φs

o(r) + 1
2
φrf

MM(r) (6)

Figure 1. Intramolecular Claisen rearrangement catalyzed
by chorismate mutase.
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the crystallographic structure of Bacillus subtilis CM (PDB
code 2CHT) with a bound transition state analog (TSA). Only
the first of four trimers in the asymmetric unit was retained,
and the TSA between chains A and B was transformed into
a chorismate molecule. The other TSAs were removed. The
system was solvated with a 30 Å water sphere and then
subjected to a 200 ps QM/MM MD simulation using self-
consistent charge-density functional tight binding (SCC-
DFTB)72 as a QM method. Our setup started from the
resulting structure corresponding to snapshot 1 in the
previous study.52 To generate 10 initial configurations for
the QM/MM calculations that are independent of the previous
study, snapshots were taken every 10 ps after 100 ps of extra
equilibration. The QM region consisted only of the choris-
mate molecule, which was modeled by the semiempirical
AM1 Hamiltonian.73 All protein atoms were assigned to the
MM region. For each configuration, the inner region was
centered on the initial position of the C1 atom (following
IUPAC nomenclature) with an extended dielectric cavity
radius of 21.0 Å. All atoms within 19.0 Å of the center were
assigned to the inner region and modeled explicitly. Due to
the inaccuracies of the SMBP and the GSBP at the
boundary,50,51 the inner region was further subdivided into
an active inner region and a frozen inner region. All atoms
within 17.0 Å of the center belong to the active region so
that it is surrounded by an “insulation” region of 2 Å. A
spherical restraint with a radius of 17.0 Å and a force
constant of 50 kcal/(mol Å2) was applied to the oxygen atoms
of all active water molecules in MD calculations with the
QM/MM/GSBP method. The reaction is described by means
of a reaction coordinate (RC) defined as the difference of
the lengths of the breaking C-O and the forming C-C
bonds. Potential energy profiles of the reaction are computed
by constraining the RC to values from -2.5 to +2.5 Å in
steps of 0.1 Å.

The electrostatic potentials that constitute the SMBP (see
eqs 5 and 6) are obtained as grid-based solutions of the PB
equation. A focusing approach is applied to allow usage of
fine grids for the inner region.74 The PB equation is first
solved for a coarse outer grid that covers the full system
and then for a fine inner grid that focuses on the inner region.
The boundary values of the inner grid are set by interpolation
from the outer grid. Therefore, the mesh sizes of the grids
are the main parameters that determine the accuracy as well
as the efficiency of the SMBP. They have to be chosen
carefully. Hence, one of the objectives of this study is the
development of a transferable protocol to estimate adequate
mesh sizes based only on fast single-point energy and
gradient calculations.

In a vacuum environment, that is, with a dielectric constant
of 1 anywhere in space, the electrostatic potential of the
SMBP and of exact Coulombic electrostatics has to be
identical. This allows simple evaluation of the accuracy of
the SMBP by direct comparison to standard QM/MM results.
Table 1 provides the mean absolute (MAD) and maximum
absolute deviations (MAX) of the gradient components for
mesh size combinations of 0.15, 0.25, 0.4, 0.6, and 0.8 Å
for the inner grid and 0.8, 1.25, 1.5, 2.0, and 2.5 Å for the
outer grid. Here, all atoms within 18 Å of the center were

considered to account for fluctuations of the active atoms
that may occur later in the simulations. MAD and MAX
results show no significant dependence on the mesh size of
the outer grid but a strong dependence on the mesh size of
the inner grid. For all mesh size combinations, the MAD
values are between 10-5 and 5 × 10-5 au. The default
convergence criterion for QM/MM geometry optimizations
is a maximum absolute gradient component of less than 4.5
× 10-4 au.63 From this perspective, the MAD results can
be deemed accurate. However, they do not allow determi-
nation of the optimal mesh size. The MAX deviations are
more helpful for this task. For inner mesh sizes of e0.25 Å,
MAX deviations are below the convergence criterion so that
this mesh size excels as a safe choice at acceptable
computational costs. Since neither the accuracy nor the
computational demands depend strongly on the mesh size
of the outer grid, a relatively fine outer grid with a mesh
size of 1.25 Å was selected in combination with an inner
grid spacing of 0.25 Å for all calculations (unless noted
otherwise).

Detailed examination shows that the accuracy of the SMBP
strongly depends on the radial position of the atoms. This
point is illustrated in Figure 2, which shows the MAD and
MAX values for different inner grid mesh sizes as a function
of the radial position. In the center of the inner region, the
electrostatic potential varies only slowly and is described
accurately by all tested mesh sizes. At the boundary,
however, the electrostatic potential becomes more complex
and the deviation increases significantly for mesh sizes >0.4
Å. Therefore, fine inner mesh sizes appear to be necessary.
Since the chemical process occurs in the center of the inner
region, however, it is possible that moderate deviations at
the boundary are tolerable. To test this hypothesis, reaction
energies and activation energies were computed for grid size
combinations ranging from 0.25/1.25 Å to 1.8/3.5 Å. The
results are documented in Table S1 of the Supporting
Information (SI). In comparison to full Coulombic electro-
statics, the MAD and MAX deviations of the potential energy
differences are below 0.3 and 0.8 kcal/mol, respectively, if
the inner mesh size is e0.8 Å. Such an inner grid mesh size

Table 1. Mean Absolute (MAD) and Maximum Absolute
(MAX) Deviations [10-4 au] of the Electrostatic Forces
Computed with the SMBP for the Chorismate Mutase
System and Averaged over 10 Configurations (Relative to
QM/MM Results with Full Coulombic Electrostatics)a

inner grid size [Å]

outer grid size [Å] 0.15 0.25 0.40 0.60 0.80

MADsatoms within 18 Å
0.80 0.11 0.12 0.19 0.31 0.45
1.25 0.16 0.16 0.23 0.34 0.48
1.50 0.17 0.17 0.23 0.35 0.48
2.00 0.15 0.16 0.22 0.34 0.47
2.50 0.18 0.18 0.24 0.36 0.49

MAXsatoms within 18 Å
0.80 2.19 3.67 8.46 16.29 20.99
1.25 3.15 4.01 8.58 16.40 21.12
1.50 3.37 4.04 8.59 16.44 21.07
2.00 2.94 4.01 8.50 16.37 21.09
2.50 3.26 4.22 8.58 16.37 21.17

a Different mesh size combinations were used.
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corresponds to a MAX deviation of the gradient components
in the range of 2 × 10-3 au (see Table 1). We conclude that
the SMBP will provide results of high accuracy if the mesh
size is chosen such that the MAX values do not exceed 4.5
× 10-4 au anywhere in the inner region. The SMBP will
still give results of adequate accuracy with coarser mesh sizes
if the MAX values do not exceed 4.5 × 10-4 au for atoms
more than 3 Å away from the boundary and if the MAX
values do not exceed 2 × 10-3 au for atoms more than 1 Å
away from the boundary.

In the GSBP, another important parameter has to be
determined: the size of the basis set which models the inner
region charge distribution. The chosen orthonormal basis
functions are based on spherical harmonics so that the size
of the basis set is determined by the order of the highest
multipole moment that is included. Table 2 gives the MAD
and MAX deviations for basis sets of increasing size
determined by maximum multipole moments from order L
) 1 to L ) 19. Moreover, it provides the fraction of
inaccurate gradient components whose deviation is larger
than the standard convergence criterion (see above). SMBP
values serve as the reference, since the SMBP represents
the basis set limit of the GSBP. In previous applications of
the GSBP, multipole moments up to order L ) 19 were
usually included. The MAX results confirm this choice and
show that with L ) 19, MAX deviations on the order of 4.5
× 10-4 au are observed, which is sufficiently accurate. The
fractions of inaccurate gradient components indicate that the
reaction field potential converges in this system at L ) 17.
The residual error can be attributed to technical differences
of SMBP and GSBP. It seems interesting to check whether
looser criteria can also yield results of adequate accuracy.
Table S2 in the SI shows that the basis-set-dependent error
converges for L ) 10 if only those atoms are considered
that are at least 3 Å away from the boundary. The impression
that L ) 10 provides sufficient accuracy is further supported
by the fact that the MAX deviation for all atoms at least 1
Å away from the boundary is 1.3 × 10-3 au (Table 2) and,
therefore, below the criterion of 2 × 10-3 au that was used
to determine the mesh sizes. Hence, L ) 19 emerges as the
safe and L ) 10 as the efficient choice. In section 4.2, both

values are tested, and it will be shown that they describe
bulk solvent effects in CM with similar accuracy.

4.2. Chorismate Mutase: Results. We now apply the
SMBP to study the effects of the EPOM and bulk solvent
on the enzymatic reaction in CM. Table 3 gives the reaction
energies and activation energies that were computed with
different methods to describe these effects. In each case, the
energy differences were averaged over 10 configurations. The
standard deviation of any given mean value defines a
confidence interval corresponding to a confidence limit of
68%. Statistically significant are differences between mean
values that are larger than the confidence interval of the
reference value.

Standard QM/MM calculations with full Coulombic
electrostatics (Coulomb in Table 3) give reaction and

Figure 2. Mean absolute deviations (a) and maximum absolute deviations (b) of the electrostatic forces at all atoms inside the
active region relative to the exact QM/MM values for the chorismate mutase (CM) test system. Results are shown for different
mesh sizes of the inner grid and are plotted as a function of the radius of the active region. An outer grid size of 1.25 Å is used.
All calculations were performed on configuration 1 of the CM system. The radius of the inner region was 19 Å (see text).

Table 2. Mean Absolute (MAD) and Maximum Absolute
(MAX) Deviations [10-4 au] and the Fraction of Inaccurate
Gradient Components (xgrad) [%] of the Electrostatic Forces
of the Chorismate Mutase System Computed with the
GSBP with Different Basis Set Sizes (Relative to SMBP
Results, See Text)c

La MAD MAX xgrad
b

1 4.00 69.77 26.47
2 3.19 60.99 21.03
3 2.39 50.28 15.60
4 1.74 39.47 11.05
5 1.22 30.00 6.76
6 0.95 27.21 4.67
7 0.76 22.59 3.16
8 0.61 18.56 1.97
9 0.50 14.48 1.13
10 0.42 13.31 0.70
11 0.36 10.97 0.40
12 0.32 8.75 0.25
13 0.29 7.34 0.12
14 0.27 5.95 0.07
15 0.25 5.26 0.05
16 0.24 5.03 0.04
17 0.23 4.72 0.03
18 0.22 4.55 0.03
19 0.22 4.53 0.03

a highest order multipole moment. b fraction of gradient
components with a deviation >4.5 × 10-4 a.u. [%]. c All values are
averaged over 10 configurations and computed with a mesh size
combination of 0.25/1.25 Å.
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activation energies of -18.8 and +35.1 kcal/mol, respec-
tively. In the standard QM/MM approach using electronic
embedding, the EPOM is computed without approximation,
but the effect of the bulk solvent is neglected. Compared to
the experimental value of 12.7 kcal/mol,75 the computed
value for the activation energy is strongly overestimated
because of the use of the AM1 Hamiltonian in the QM
region.28 Despite this shortcoming, we expect the AM1
Hamiltonian to be adequate for studying the relative effects
caused by long-range electrostatics, which should be captured
at this level in a realistic manner. For two of the 10
configurations, the conclusions drawn from AM1 results were
confirmed by more accurate DFT calculations using the
B3LYP functional76-78 in combination with a 6-31G* basis
(see below).

When the SMBP is applied under vacuum conditions
(SMBP(vac)), the effect of the EPOM is approximated and
bulk solvent effects are neglected. The SMBP describes the
EPOM accurately and reproduces the standard QM/MM
results with very small deviations. The mean values for the
reaction and activation energy differ by only 0.2 and 0.1
kcal/mol, respectively. Also, the results for the individual
configurations are very similar, as indicated by MAD values
of similar size.

Going one step further, one could completely neglect the
electrostatic influence from the outer solvent and macro-
molecule region (neglect of outer region, NOR). This
simplest approximation should lead to significant deviations
from the standard QM/MM results, if the energetics are
sensitive to long-range electrostatics. With the NOR ap-
proximation, the mean reaction and activation energies
increase by 0.7 and 0.6 kcal/mol, respectively (Table 3).
These differences are at the boundary of the confidence
interval of the standard QM/MM results and thus cannot be
considered significant. However, the MAD values of 1.3 and
1.5 kcal/mol for reaction and activation energies show that
the results deviate significantly for the individual configura-
tions. With less fortuitous error cancellation, significant
discrepancies of more than 1 kcal/mol are therefore possible
when applying the NOR approximation.

The effect of bulk solvent on this reaction was studied
using the SMBP with a dielectric constant of 80 for the outer
solvent region (SMBP(solv)). The inclusion of bulk solvent
lowers the reaction energy only marginally by 0.2 kcal/mol.
A stronger change is observed for the activation energy,
which is reduced by 0.7 kcal/mol to a value of 34.4 kcal/
mol. However, both values lie still within the statistical error
bars of the standard QM/MM results so that the effect of
bulk solvent has to be deemed insignificant for this reaction.

For configurations 3 and 8, the effects of the EPOM and
bulk solvent were checked by DFT/MM calculations using
B3LYP/6-31G* for the QM region. The results are sum-
marized in Table 4. Focusing on the computed barriers, we
first note that the standard DFT/MM treatment with Cou-
lombic electrostatics yields values (13.0-15.9 kcal/mol)
close to experimental results (see above). These barriers are
lowered slightly when applying the SMBP under vacuum
conditions (by 0.0-0.4 kcal/mol) and more so when using
the NOR approximation (by 0.2-1.1 kcal/mol). The barrier
lowering due to bulk solvent is again small (0.2-0.4 kcal/
mol). These DFT results are fully consistent with the AM1/
MM results (Table 3).

Since the QM region is usually located far away from the
dielectric boundary, one can assume that the QM contribution
to the reaction field potential is small and can be neglected.
This is the SMBP(solv,app) approximation which neglects
the φrf

QM term in eq 5 and thus avoids the SCRF procedure,
thereby accelerating the SMBP calculations. This approach
yields reaction and activation energies of -18.5 and +35.0

Table 3. Reaction Energies (∆E) and Activation Energies (∆E‡) of the Claisen Rearrangement in Chorismate Mutase
[kcal/mol] Computed with Different Treatments of Long-Range Electrostatics

Coulomb SMBP(vac)a NORb SMBP(solv)c SMBP(solv,app)d

configuration ∆E ∆E‡ ∆E ∆E‡ ∆E ∆E‡ ∆E ∆E‡ ∆E ∆E‡

1 -20.0 33.0 -19.3 33.1 -19.9 33.4 -20.1 32.6 -19.1 32.8
2 -17.3 34.8 -17.2 34.8 -11.5 41.6 -18.3 33.1 -17.2 34.3
3 -17.5 40.1 -17.1 40.4 -18.9 37.2 -16.8 39.5 -16.5 40.2
4 -17.7 38.2 -17.7 38.3 -14.9 36.5 -17.3 37.5 -17.3 37.8
5 -21.9 32.4 -21.8 32.5 -21.8 33.1 -21.9 32.4 -21.9 32.7
6 -18.0 36.2 -17.8 36.3 -17.1 36.6 -17.7 35.4 -17.7 35.4
7 -19.6 35.3 -19.5 35.4 -19.3 35.3 -19.9 34.7 -19.6 35.1
8 -19.3 35.8 -19.3 35.7 -19.2 37.2 -19.4 34.9 -19.0 36.0
9 -16.3 34.4 -16.1 34.5 -17.4 34.7 -17.9 33.5 -17.2 34.0
10 -20.7 30.6 -20.7 30.6 -20.6 31.3 -21.0 30.4 -20.0 31.5
mean value -18.8 35.1 -18.6 35.2 -18.1 35.7 -19.0 34.4 -18.5 35.0
standard deviation of datae 1.8 2.8 1.8 2.8 3.0 2.9 1.7 2.6 1.7 2.6
standard deviation of meanf 0.6 0.9 0.6 0.9 0.9 0.9 0.5 0.8 0.5 0.8
MADg 0.2 0.1 1.3 1.5 0.5 0.6

a ε ) 1. b Neglect of outer region. c ε ) 80. d ε ) 80, φrf
QM ) 0. e Standard deviation of individual energy values. f Standard deviation of

the mean value (68% confidence limit). g Mean absolute deviation relative to full Coulombic electrostatics. For SMBP(solv,app), SMBP(solv)
values are used as a reference.

Table 4. Reaction Energies (∆E) and Activation Energies
(∆E‡) in Chorismate Mutase [kcal/mol] Computed at the
QM(B3LYP/6- 31G*)/MM Level of Theory with Different
Treatments of Long-Range Electrostatics (See Table 3 for
Notation)

Coulomb SMBP(vac) NORa SMBP(solv)

configuration ∆E ∆E‡ ∆E ∆E‡ ∆E ∆E‡ ∆E ∆E‡

3 -14.0 15.9 -14.8 15.5 -14.3 14.8 -13.5 15.7
8 -16.2 13.0 -16.2 13.0 -17.1 12.8 -16.3 12.6

a Neglect of outer region.
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kcal/mol, respectively. These values are within the statistical
error bars of the standard QM/MM and the SMBP(solv)
results. Hence, this approximation is valid for this reaction.

Finally, we checked whether the effect of the EPOM and
bulk solvent is more pronounced for the dynamical behavior
of this system, that is, when computing free energy differ-
ences. We applied the QM/MM-FEP method to compute the
free energies of reaction and activation at T ) 300 K (Table
5). Along the RC, the reaction was split up into discrete
windows. For each of these, ESP charges for the QM atoms
were derived by fitting to the electrostatic potential at the
200 MM atoms closest to the QM region. For each window,
the active region was equilibrated for 10 ps with the QM
region held fixed and the QM-MM electrostatic interactions
modeled classically using the ESP charges. Subsequently,
energy differences were sampled for 10 ps, and the data were
subjected to statistical tests for lack of correlation and trend.79

If necessary, data were discarded to obtain a series of values
without a trend. Although the effective sampling length was
determined by the statistical tests, it was ensured that at least
5 ps of data were retained.

In the QM/MM-FEP calculations, the GSBP was applied
to sample the MM phase space efficiently.51 Again, the
accuracy of the QM/MM/GSBP-FEP ansatz was validated
against standard QM/MM-FEP results using vacuum condi-
tions. However, since QM/MM-FEP calculations are com-
putationally intense, free energy profiles without GSBP were
obtained only for two configurations. The results are
documented in Table S3 of the SI and show that QM/MM/
GSBP reproduces QM/MM results in FEP calculations well,
with deviations of 0.0-0.2 kcal/mol in the reaction free
energies (∆A) and 0.3-0.5 kcal/mol in the activation free
energies (∆A‡). We now consider the changes in the
calculated mean values when going from potential energies
(Table 3) to free energies (Table 5). Using the GSBP in a
vacuum, the reaction energy increases by +0.7 to -17.9 kcal/
mol while the activation energy decreases by 1.8 to 33.4
kcal/mol. Four terms contribute to the difference between
free and potential energy: the zero point vibrational energy
(ZPE, ∆EZPE), the thermal contribution to the internal energy
(∆Uth), the QM entropy contribution (-T∆SQM), and the

entropy of the QM-MM interactions (-T∆SQM-MM). In the
QM/MM-FEP approach, we assume that -T∆SQM-MM is the
difference of free and potential QM-MM interaction ener-
gies and neglect other contributions. Table 6 shows that the
total effect on the barrier is dominated by the ZPE. The
entropic QM contribution from the harmonic approximation
(0.8 kcal/mol) cancels the entropic QM-MM contribution
from the sampling (-0.8 kcal/mol) so that entropy does not
contribute significantly to finite-temperature effects on the
activation energy. This result contradicts the experimental
observation of an entropic contribution of (-T∆S)exp ) 2.7
kcal/mol.75 The negative change of entropy in the transition
state has been ascribed to the loss of conformational
flexibility due to the partial formation of two covalent
bonds.52 Since the degrees of freedom of the QM region are
held fixed during QM/MM-FEP sampling, this phenomenon
cannot be captured in the free energy difference of QM-MM
interactions. The entropic QM contribution based on the
harmonic approximation shows the correct trend but under-
estimates the magnitude. Therefore, one may tentatively
assume that a significant contribution to the negative change
in entropy in the activation energy of CM comes from the
degrees of freedom that involve coupled motions of QM and
MM atoms which are not sampled in the QM/MM-FEP
ansatz. The deviation of QM/MM/GSBP-FEP results from
experimental results would then arise from the QM/MM-
FEP ansatz itself, not from the approximations in the
boundary potentials. This view is supported by the results
of previous semiempirical QM/MM umbrella sampling
simulations (QM ) SCC-DFTB) that do not restrict the
flexibility of the QM region and reproduce the entropic

Table 5. Reaction Free Energies (∆A) and Activation Free Energies (∆A‡) in Chorismate Mutase [kcal/mol] at T ) 300 K
Computed with Different Treatments of Long-Range Electrostatics

GSBP(vac) GSBP(solv)a GSBP(solv,fast)b NORc

configuration ∆A ∆A‡ ∆A ∆A‡ ∆A ∆A‡ ∆A ∆A‡

1 -19.0 31.1 -17.6 31.1 -17.0 31.6 -16.9 31.7
2 -17.1 32.6 -16.2 33.1 -15.7 33.1 -14.5 36.8
3 -16.0 37.8 -14.6 36.2 -15.6 36.6 -16.3 33.9
4 -18.0 35.1 -15.2 35.7 -15.9 34.6 -15.8 33.7
5 -18.3 33.5 -19.2 32.2 -18.3 32.7 -18.9 32.2
6 -17.0 34.8 -17.0 32.4 -16.6 33.4 -15.8 34.6
7 -18.6 33.2 -18.1 32.5 -18.5 32.1 -19.1 31.7
8 -18.1 33.2 -16.6 33.4 -17.3 32.9 -16.2 33.1
9 -17.5 32.2 -16.6 32.3 -17.3 31.7 -16.2 31.9
10 -19.7 30.4 -18.4 30.2 -18.0 31.1 -17.8 31.9
mean value -17.9 33.4 -16.9 32.9 -17.0 33.0 -16.8 33.1
standard deviation of datad 1.1 2.1 1.4 1.8 1.1 1.6 1.4 1.6
standard deviation of meane 0.3 0.7 0.5 0.6 0.3 0.5 0.5 0.5

a Grid size: 0.25/1.25 Å, 400 basis functions (L ) 19). b Grid size: 0.6/2.0 Å, 121 basis functions (L ) 10). c Neglect of outer region.
d Standard deviation of individual energy values. e Standard deviation of the mean value (68% confidence limit).

Table 6. Contributions [kcal/mol] to the Differences
between Free and Potential Energies in Chorismate
Mutase Using the QM/MM/GSBP-FEP Method (See Text)a

reaction activation

∆EZPE 0.3 -1.5
∆Uth -0.1 -0.3
-T∆SQM 0.3 0.8
-T∆SQM-MM 0.2 -0.8
total 0.7 -1.8

a All values are averaged over 10 configurations.
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contribution to the barrier with good accuracy.52 It is further
substantiated by the observation that QM/MM-FEP predicts
a negative entropic QM-MM contribution (-T∆SQM-MM)
to the activation free energy independent of the boundary
potential and the QM/MM level of theory (Table S4, SI).

The effects of bulk solvent on the free energy differences
were studied using a dielectric constant of 80 for the outer
solvent region (GSBP(solv)). The activation free energy
decreases upon such inclusion of bulk solvent by 0.5 kcal/
mol and is thus still within the confidence interval of the
vacuum result. The reaction energy, however, increases
significantly by +1.0 to -16.9 kcal/mol. These results are
reproduced quite accurately if coarser mesh sizes of 0.6/2.0
Å and a smaller basis set (L ) 10) are used (GSBP-
(solv,fast)). However, simply neglecting the electrostatic
effect of the outer region (NOR) yields results of very similar
accuracy. This can be explained by the shielding effect of
the outer solvent, which is mimicked most simply by
neglecting the outer region charges. The quantitative accuracy
is probably fortuitous given that the results for the potential
energy differences deviate significantly from the SMBP(solv)
results (Table 3).

On the basis of these results, we may draw the following
conclusions for CM: The SMBP and the GSBP reproduce
long-range electrostatic interactions with high accuracy when
using fine grids with mesh sizes of 0.25/1.25 Å as well as
coarser grids with mesh sizes of 0.6/2.0 Å. It should be
emphasized, however, that the influence of the EPOM on
this reaction is limited. This can be attributed to the “neutral”
character of the intramolecular Claisen rearrangement in CM.
Neglecting the electrostatic influence of the outer region does
not have much effect on the mean potential energy differ-
ences although the results for the individual configurations
differ significantly. Similarly, bulk solvent effects do not
affect the potential energy differences. A statistically sig-
nificant influence of bulk solvent on the order of 1 kcal/mol
was only observed for the reaction free energy.

4.3. p-Hydroxybenzoate Hydroxylase. The hydroxyla-
tion reaction in the catalytic cycle of PHBH has been the
focus of many theoretical investigations. It has become a
prototypical test system to benchmark theoretical methods
for computational enzymology. A summary of theoretical
work on PHBH is provided in a recent review.28 In this

reaction, a formal OH+ unit is transferred from the flavin-
adenine hydroperoxide cofactor (FADHOOH) to the p-
hydroxybenzoate substrate (pOHB; see Figure 3). Since the
reaction is associated with a considerable charge transfer, it
is a potentially good test case for reactions with stronger
long-range electrostatic interactions.

The PHBH setup was based on a system that has been
used in previous studies.79-81 It was generated by solvating
the enzyme containing the FADHOOH cofactor and the
pOHB substrate in a 90 Å solvent box and equilibrating it
with gradually decreasing harmonic restraints on the non-
water atoms. In a following MD run, harmonic restraints
were acting only on the cofactor and substrate, and in the
resulting structure, which served as starting point for our
setup, all water molecules outside 11 Å from any protein
atom were discarded.

Due to a change of force field from GROMOS (previously)
to CHARMM (this study), the system was re-equilibrated
for 500 ps with constraints on the cofactor, substrate, and
all water molecules with oxygen atoms outside 2.9 Å from
any protein atom. Five configurations were selected from
this MD run after 420, 440, 460, 480, and 500 ps, which
were used as starting structures to compute potential energy
profiles of the hydroxylation reaction. The QM region
comprised pOHB and the isoalloxazine part of FADHOOH
up to the first methylene unit of the ribityl side chain, which
was saturated with a hydrogen link atom. The B3LYP
functional76-78 in combination with a 6-31G* basis set was
used to model the QM atoms. When applying the SMBP,
the inner region was centered on the initial position of the
distal oxygen atom of the FADHOOH cofactor with an
extended dielectric cavity radius of 22.5 Å. All charge groups
with any atom within 18.5 Å of the center were assigned to
the inner region and were modeled explicitly. The remaining
set of atoms constituted the outer macromolecule region and
was represented by the SMBP. All charge groups with any
atom within 16 Å of the center were assigned to the active
region and were allowed to move during optimization. The
hydroxylation reaction was described by means of a RC,
which was chosen to be the difference in the bond lengths
of the breaking bond between the proximal (Op) and distal
(Od) oxygen atoms of FADHOOH and the forming bond

Figure 3. Hydroxylation reaction catalyzed by p-hydroxybenzoate hydroxylase. R denotes the ribityl side chain of the hydroperoxo
flavine-adenine cofactor.

Long-Range Electrostatic Effects J. Chem. Theory Comput., Vol. 7, No. 1, 2011 245



between the distal oxygen atom and the meta carbon atom
of pOHB (Cm).

The potential energy profile was scanned for RC values
between -1.7 Å and +1.7 Å in steps of 0.1 Å. We applied
the same statistical test as in the CM system to validate the
boundary potentials for PHBH and determined the optimal
mesh and basis set sizes. For the sake of brevity and clarity,
the data are relegated to the SI (Tables S4-S6, Figure S1),
and only the results are briefly summarized here. Analysis
of the deviations of the gradient components (Table S5)
indicates that deviations in PHBH are very similar to those
in CM. The relationship of accuracy and radial position is
also similar: deviations are very small in the center of the
inner region and increase significantly only for coarse mesh
sizes and only at the boundary separating the inner and outer
regions (Figure S1). Therefore, a mesh size combination of
0.25/1.25 Å excels again as a safe choice that reproduces
full Coulombic electrostatics very accurately in all parts of
the inner region. However, coarser mesh sizes also reproduce
the electrostatic potential accurately everywhere except in
close proximity to the boundary. As in CM, potential energy
differences are less sensitive to the mesh sizes: computations
with mesh size combinations ranging from 0.25/1.25 Å to
1.8/3.5 Å yield accurate results with MAX deviations that
do not exceed 0.3 kcal/mol for all mesh sizes (Table S7). In
GSBP calculations, basis sets of similar size are adequate
for CM and PHBH (Table S6).

On the basis of these results, we conclude that SMBP and
GSBP behave very similarly with respect to their accuracy
and its dependence on the parameters for these two enzymes,
despite the different nature of the two reactions and the
different QM methods used (AM1 and B3LYP, respectively).
This substantiates our expectation that not only the validation
protocol but also the resulting parameters are transferable
to other enzymatic systems. We suggest a mesh size
combination of 0.25/1.25 Å with multipole moments up to
order L ) 19 as a safe choice for accurate calculations. As
default options, we recommend a mesh size combination of
0.6/1.25 Å with multipole moments up to order L ) 10 for
efficient application of SMBP and GSBP. Since even coarser
mesh sizes reproduce energy differences with only marginal

deviations, we are confident that these values yield accurate
results at reduced computational costs for general enzymatic
systems.

A mesh size combination of 0.25/1.25 Å was applied to
compute the potential energy differences of the hydroxylation
step in PHBH with the SMBP in solution and in a vacuum,
with full Coulombic electrostatics, and with the simple NOR
approach. We found it unavoidable to discard configuration
2, since we failed to compute continuous energy profiles for
this configuration despite many attempts. The results in Table
7 show that the SMBP reproduces standard QM/MM results
with high accuracy. The mean values of the reaction and
activation energy deviate by only 0.2 and 0.0 kcal/mol. MAD
values of similar magnitude show that the results for the
individual configurations also agree well. In contrast to CM,
the EPOM has a significant effect on the energetics of the
hydroxylation reaction in PHBH. If the electrostatic influence
of the outer region is simply neglected (NOR), the mean
value of the reaction energy changes by more than 6 kcal/
mol from -25.4 to -31.5 kcal/mol. The activation energy
is reduced by more than 2 kcal/mol from 9.7 to 7.6 kcal/
mol. MAD values of 6.1 and 3.0 kcal/mol for reaction and
activation energies show that the deviations are even larger
for the individual configurations.

A more detailed analysis reveals that two different effects
are responsible for the observed differences in the reaction
energies. In configurations 1 and 3, the hydrogen bonding
networks connecting the QM and MM region are different
after geometry optimization with full Coulombic electrostat-
ics and with the NOR approximation. By contrast, in
configurations 4 and 5, the hydrogen bonding networks
between the QM and MM region are very similar for both
electrostatic treatments. In these two configurations, the
differences in the reaction energies are dominated by the
differences in the electrostatic QM-MM interaction energies,
as shown in Table S8. Here, the electrostatic QM-MM
interaction energy includes direct QM-MM interactions as
well as the polarization effect of the MM point charges.
These results suggest that with the NOR approximation the
MM atoms are more flexible in adapting to the electrostatic
potential of the QM region since they do not feel the EPOM.
This effect becomes more pronounced when the QM region
becomes more polar. During the hydroxylation reaction in
PHBH, the less polar peroxide group separates into more

Table 7. Reaction Energies (∆E) and Activation Energies (∆E‡) of the Hydroxylation Reaction in p-Hydroxybenzoate
Hydroxylase [kcal/mol] Computed with Different Treatments of Long-Range Electrostatics

Coulomb SMBP(vac)a NORb SMBP(solv)c SMBP(solv,app)d

configuration ∆E ∆E‡ ∆E ∆E‡ ∆E ∆E‡ ∆E ∆E‡ ∆E ∆E‡

1 -27.0 9.5 -26.9 9.4 -28.9 11.4 -28.5 8.0 -29.7 7.9
3 -21.2 11.4 -20.9 11.4 -35.5 4.6 -21.8 10.7 -30.6 7.9
4 -28.1 7.9 -27.9 7.9 -32.1 6.6 -29.8 5.9 -31.3 6.1
5 -25.3 10.1 -25.2 10.2 -29.5 7.9 -25.2 9.0 -28.9 8.1
mean value -25.4 9.7 -25.2 9.7 -31.5 7.6 -26.3 8.4 -30.1 7.5
standard deviation of datae 3.0 1.5 3.1 1.5 3.0 2.9 3.6 2.0 1.0 1.0
standard deviation of meanf 1.5 0.7 1.5 0.7 1.5 1.4 1.8 1.0 0.5 0.5
MADg - - 0.2 0.0 6.1 3.0 - - 3.8 1.0

a ε ) 1. b Neglect of outer region. c ε ) 80. d ε ) 80, φrf
QM ) 0. e Standard deviation of individual energy values. f Standard deviation of

the mean value (68% confidence limit). g Mean absolute deviation relative to full Coulombic electrostatics. For SMBP(solv,app), SMBP(solv)
values are used as a reference.

� ) d(Od - Op) - d(Od - Cm) (7)
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polar alcohol and alcoholate groups, which form hydrogen
bonds with the neighboring MM residues. Therefore, the
difference in the QM-MM interaction energies of the
product and reactant is greater with the NOR approximation
compared to that with full Coulombic electrostatics. The
NOR approximation favors the more polar product state and
thus shifts the reaction energies to more negative values. In
conclusion, we face two possible consequences of neglecting
the EPOM: either geometry optimizations may lead to
structures that already differ in the hydrogen bonding network
or changes in the QM-MM interaction energies may bias
reaction energetics significantly, even when the hydrogen
bonding network is similar. These results underline the fact
that the EPOM can have a significant influence on potential
energy differences. They cast doubt on the quantitative
accuracy of QM/MM and pure QM studies that neglect the
EPOM.

In PHBH, we also observe a significant solvent effect on
the reaction. When bulk solvent is modeled with the SMBP,
the activation energy decreases by more than 1 kcal/mol from
9.7 to 8.4 kcal/mol. This agrees qualitatively with chemical
reasoning: the bulk solvent stabilizes the charged OH+

species and lowers the energy of the transition state. Given
the distinct charge transfer in this reaction, the effect of bulk
solvent that is observed in PHBH should be in the upper
range of what can be expected in enzymatic reactions. Even
stronger effects seem possible if the inner region is chosen
to be rather small and the charge transfer thus occurs closer
to the dielectric boundary.

The significant solvent effect renders this reaction an
interesting test for the SMBP(solv,app) method, which
neglects the QM contribution to the reaction field potential.
A satisfying agreement with SMBP(solv) results can only
be observed for configuration 1. For the other configurations,
deviations reach up to 10 kcal/mol. The mean value for the
reaction energy is -30.1 kcal/mol and therefore far outside
the confidence interval of the SMBP(solv) mean value. In
the case of PHBH, the QM contribution to the reaction field
potential thus has a significant influence on the energetics
of the hydroxylation reaction. Hence, the SMBP(solv,app)
method is not a valid approximation in the PHBH system.

5. Conclusion

In this study, we evaluated the electrostatic effect of the outer
macromolecule region and of bulk solvent on two enzymatic
systems. We applied the newly developed SMBP, which
allows us to model bulk solvent as a PDC and to distinguish
the effects of bulk solvent and the EPOM. The SMBP
introduces approximations to describe electrostatic interac-
tions with the outer macromolecule region more efficiently.
Therefore, the accuracy of the SMBP was evaluated for both
enzymatic test systems, and a protocol for validation and
determination of adequate values for its inherent parameters
was presented. This protocol was applied to generate a set
of optimal parameters that is transferable to general enzy-
matic systems. The SMBP was found to describe the EPOM
with high accuracy. Typically, deviations of mean values
on the order of 0.1 to 0.2 kcal/mol are observed for both

enzymes. Deviations for individual configurations may be
slightly higher but rarely exceed 0.3 kcal/mol.

Two enzymatic reactions with rather different character-
istics were used to study the effect of the EPOM and bulk
solvent. The Claisen rearrangement in CM is a pericyclic
reaction without much charge transfer. For this kind of
reaction, the electrostatic influence of the outer macromol-
ecule region on the reaction energetics is not significant when
considering the mean values of all 10 configurations.
However, deviations on the order of 1.5 kcal/mol are
observed for individual configurations so that the neglect of
long-range electrostatics can be detrimental in the absence
of adequate sampling. Bulk solvent effects on the reaction
energetics in CM are found to be small.

The hydroxylation reaction in PHBH, in contrast, is
associated with a stronger charge transfer since the reaction
formally corresponds to an OH+ transfer. As a consequence,
the EPOM has a strong influence on the reaction energetics,
and its neglect causes errors of several kilocalories per mole
due to a systematic overstabilization of the more polar
product state (arising from the higher flexibility of the MM
residues without the EPOM). Moreover, bulk solvent stabi-
lizes the transition state and reduces the reaction barrier by
about 1 kcal/mol in PHBH.

Depending on the charge transfer characteristics of the
chemical process, the EPOM and bulk solvent can thus have
a significant effect on the energetics of enzymatic reactions.
Among these two contributions, the EPOM is clearly more
important. The SMBP offers a convenient way to evaluate
both contributions accurately and efficiently in QM/MM
calculations.
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Kekulé scholarship from the Fonds der Chemischen Industrie.
We thank J. Breidung and S. Thiel for CM and PHBH input
data and A. Koslowski for his program to perform spline
fits of energy profiles.

Supporting Information Available: Energy differ-
ences of the reactions in CM and PHBH with different mesh
size combinations; free energy differences of the reaction in
CM using full Coulombic electrostatics for two configura-
tions; evaluation of the accuracy of the electrostatic forces
for different basis set sizes using the GSBP for CM and
PHBH; evaluation of the accuracy of the electrostatic forces
with different mesh sizes for PHBH; contributions to the
reaction energies of the hydroxylation reaction in PHBH;
plot of MAD and MAX values of electrostatic forces as a
function of the radial position for PHBH. This information
is available free of charge via the Internet at http://
pubs.acs.org.

References

(1) Sagui, C.; Darden, T. A. Annu. ReV. Biophys. Struct. 1999,
28, 155–179.

(2) Warshel, A.; Papazyan, A. Curr. Opin. Struct. Biol. 1998,
8, 211–217.

Long-Range Electrostatic Effects J. Chem. Theory Comput., Vol. 7, No. 1, 2011 247



(3) Davis, M. E.; McCammon, J. A. Chem. ReV. 1990, 90, 509–
521.

(4) Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G.
Science 2004, 303, 186–195.
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